File size: 16,106 Bytes
ad283e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""Pytorch Densenet implementation w/ tweaks
This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with
fixed kwargs passthrough and addition of dynamic global avg/max pool.
"""
import re
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch.jit.annotations import List

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier
from ._builder import build_model_with_cfg
from ._manipulate import MATCH_PREV_GROUP
from ._registry import register_model, generate_default_cfgs, register_model_deprecations

__all__ = ['DenseNet']


class DenseLayer(nn.Module):
    def __init__(
            self,
            num_input_features,
            growth_rate,
            bn_size,
            norm_layer=BatchNormAct2d,
            drop_rate=0.,
            grad_checkpointing=False,
    ):
        super(DenseLayer, self).__init__()
        self.add_module('norm1', norm_layer(num_input_features)),
        self.add_module('conv1', nn.Conv2d(
            num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)),
        self.add_module('norm2', norm_layer(bn_size * growth_rate)),
        self.add_module('conv2', nn.Conv2d(
            bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = float(drop_rate)
        self.grad_checkpointing = grad_checkpointing

    def bottleneck_fn(self, xs):
        # type: (List[torch.Tensor]) -> torch.Tensor
        concated_features = torch.cat(xs, 1)
        bottleneck_output = self.conv1(self.norm1(concated_features))  # noqa: T484
        return bottleneck_output

    # todo: rewrite when torchscript supports any
    def any_requires_grad(self, x):
        # type: (List[torch.Tensor]) -> bool
        for tensor in x:
            if tensor.requires_grad:
                return True
        return False

    @torch.jit.unused  # noqa: T484
    def call_checkpoint_bottleneck(self, x):
        # type: (List[torch.Tensor]) -> torch.Tensor
        def closure(*xs):
            return self.bottleneck_fn(xs)

        return cp.checkpoint(closure, *x)

    @torch.jit._overload_method  # noqa: F811
    def forward(self, x):
        # type: (List[torch.Tensor]) -> (torch.Tensor)
        pass

    @torch.jit._overload_method  # noqa: F811
    def forward(self, x):
        # type: (torch.Tensor) -> (torch.Tensor)
        pass

    # torchscript does not yet support *args, so we overload method
    # allowing it to take either a List[Tensor] or single Tensor
    def forward(self, x):  # noqa: F811
        if isinstance(x, torch.Tensor):
            prev_features = [x]
        else:
            prev_features = x

        if self.grad_checkpointing and self.any_requires_grad(prev_features):
            if torch.jit.is_scripting():
                raise Exception("Memory Efficient not supported in JIT")
            bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
        else:
            bottleneck_output = self.bottleneck_fn(prev_features)

        new_features = self.conv2(self.norm2(bottleneck_output))
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return new_features


class DenseBlock(nn.ModuleDict):
    _version = 2

    def __init__(
            self,
            num_layers,
            num_input_features,
            bn_size,
            growth_rate,
            norm_layer=BatchNormAct2d,
            drop_rate=0.,
            grad_checkpointing=False,
    ):
        super(DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                norm_layer=norm_layer,
                drop_rate=drop_rate,
                grad_checkpointing=grad_checkpointing,
            )
            self.add_module('denselayer%d' % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.items():
            new_features = layer(features)
            features.append(new_features)
        return torch.cat(features, 1)


class DenseTransition(nn.Sequential):
    def __init__(
            self,
            num_input_features,
            num_output_features,
            norm_layer=BatchNormAct2d,
            aa_layer=None,
    ):
        super(DenseTransition, self).__init__()
        self.add_module('norm', norm_layer(num_input_features))
        self.add_module('conv', nn.Conv2d(
            num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
        if aa_layer is not None:
            self.add_module('pool', aa_layer(num_output_features, stride=2))
        else:
            self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate before classifier layer
        proj_drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
    """

    def __init__(
            self,
            growth_rate=32,
            block_config=(6, 12, 24, 16),
            num_classes=1000,
            in_chans=3,
            global_pool='avg',
            bn_size=4,
            stem_type='',
            act_layer='relu',
            norm_layer='batchnorm2d',
            aa_layer=None,
            drop_rate=0.,
            proj_drop_rate=0.,
            memory_efficient=False,
            aa_stem_only=True,
    ):
        self.num_classes = num_classes
        super(DenseNet, self).__init__()
        norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer)

        # Stem
        deep_stem = 'deep' in stem_type  # 3x3 deep stem
        num_init_features = growth_rate * 2
        if aa_layer is None:
            stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        else:
            stem_pool = nn.Sequential(*[
                nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
                aa_layer(channels=num_init_features, stride=2)])
        if deep_stem:
            stem_chs_1 = stem_chs_2 = growth_rate
            if 'tiered' in stem_type:
                stem_chs_1 = 3 * (growth_rate // 4)
                stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4)
            self.features = nn.Sequential(OrderedDict([
                ('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)),
                ('norm0', norm_layer(stem_chs_1)),
                ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)),
                ('norm1', norm_layer(stem_chs_2)),
                ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)),
                ('norm2', norm_layer(num_init_features)),
                ('pool0', stem_pool),
            ]))
        else:
            self.features = nn.Sequential(OrderedDict([
                ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
                ('norm0', norm_layer(num_init_features)),
                ('pool0', stem_pool),
            ]))
        self.feature_info = [
            dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')]
        current_stride = 4

        # DenseBlocks
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bn_size,
                growth_rate=growth_rate,
                norm_layer=norm_layer,
                drop_rate=proj_drop_rate,
                grad_checkpointing=memory_efficient,
            )
            module_name = f'denseblock{(i + 1)}'
            self.features.add_module(module_name, block)
            num_features = num_features + num_layers * growth_rate
            transition_aa_layer = None if aa_stem_only else aa_layer
            if i != len(block_config) - 1:
                self.feature_info += [
                    dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)]
                current_stride *= 2
                trans = DenseTransition(
                    num_input_features=num_features,
                    num_output_features=num_features // 2,
                    norm_layer=norm_layer,
                    aa_layer=transition_aa_layer,
                )
                self.features.add_module(f'transition{i + 1}', trans)
                num_features = num_features // 2

        # Final batch norm
        self.features.add_module('norm5', norm_layer(num_features))

        self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')]
        self.num_features = self.head_hidden_size = num_features

        # Linear layer
        global_pool, classifier = create_classifier(
            self.num_features,
            self.num_classes,
            pool_type=global_pool,
        )
        self.global_pool = global_pool
        self.head_drop = nn.Dropout(drop_rate)
        self.classifier = classifier

        # Official init from torch repo.
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]',
            blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [
                (r'^features\.denseblock(\d+)\.denselayer(\d+)', None),
                (r'^features\.transition(\d+)', MATCH_PREV_GROUP)  # FIXME combine with previous denselayer
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for b in self.features.modules():
            if isinstance(b, DenseLayer):
                b.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.classifier

    def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
        self.num_classes = num_classes
        self.global_pool, self.classifier = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool)

    def forward_features(self, x):
        return self.features(x)

    def forward_head(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        x = self.head_drop(x)
        return x if pre_logits else self.classifier(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _filter_torchvision_pretrained(state_dict):
    pattern = re.compile(
        r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')

    for key in list(state_dict.keys()):
        res = pattern.match(key)
        if res:
            new_key = res.group(1) + res.group(2)
            state_dict[new_key] = state_dict[key]
            del state_dict[key]
    return state_dict


def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs):
    kwargs['growth_rate'] = growth_rate
    kwargs['block_config'] = block_config
    return build_model_with_cfg(
        DenseNet,
        variant,
        pretrained,
        feature_cfg=dict(flatten_sequential=True),
        pretrained_filter_fn=_filter_torchvision_pretrained,
        **kwargs,
    )


def _cfg(url='', **kwargs):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs,
    }


default_cfgs = generate_default_cfgs({
    'densenet121.ra_in1k': _cfg(
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'densenetblur121d.ra_in1k': _cfg(
        hf_hub_id='timm/',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    'densenet264d.untrained': _cfg(),
    'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'),
    'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'),
    'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'),
    'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'),
})


@register_model
def densenet121(pretrained=False, **kwargs) -> DenseNet:
    r"""Densenet-121 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16))
    model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def densenetblur121d(pretrained=False, **kwargs) -> DenseNet:
    r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d)
    model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def densenet169(pretrained=False, **kwargs) -> DenseNet:
    r"""Densenet-169 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32))
    model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def densenet201(pretrained=False, **kwargs) -> DenseNet:
    r"""Densenet-201 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32))
    model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def densenet161(pretrained=False, **kwargs) -> DenseNet:
    r"""Densenet-161 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24))
    model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def densenet264d(pretrained=False, **kwargs) -> DenseNet:
    r"""Densenet-264 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep')
    model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


register_model_deprecations(__name__, {
    'tv_densenet121': 'densenet121.tv_in1k',
})