File size: 14,465 Bytes
ad283e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
""" Model Registry
Hacked together by / Copyright 2020 Ross Wightman
"""

import fnmatch
import re
import sys
import warnings
from collections import defaultdict, deque
from copy import deepcopy
from dataclasses import replace
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple

from ._pretrained import PretrainedCfg, DefaultCfg

__all__ = [
    'split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs',
    'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules',
    'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_pretrained_cfgs'
]

_module_to_models: Dict[str, Set[str]] = defaultdict(set)  # dict of sets to check membership of model in module
_model_to_module: Dict[str, str] = {}  # mapping of model names to module names
_model_entrypoints: Dict[str, Callable[..., Any]] = {}  # mapping of model names to architecture entrypoint fns
_model_has_pretrained: Set[str] = set()  # set of model names that have pretrained weight url present
_model_default_cfgs: Dict[str, PretrainedCfg] = {}  # central repo for model arch -> default cfg objects
_model_pretrained_cfgs: Dict[str, PretrainedCfg] = {}  # central repo for model arch.tag -> pretrained cfgs
_model_with_tags: Dict[str, List[str]] = defaultdict(list)  # shortcut to map each model arch to all model + tag names
_module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict)
_deprecated_models: Dict[str, Optional[str]] = {}


def split_model_name_tag(model_name: str, no_tag: str = '') -> Tuple[str, str]:
    model_name, *tag_list = model_name.split('.', 1)
    tag = tag_list[0] if tag_list else no_tag
    return model_name, tag


def get_arch_name(model_name: str) -> str:
    return split_model_name_tag(model_name)[0]


def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]):
    out = defaultdict(DefaultCfg)
    default_set = set()  # no tag and tags ending with * are prioritized as default

    for k, v in cfgs.items():
        if isinstance(v, dict):
            v = PretrainedCfg(**v)
        has_weights = v.has_weights

        model, tag = split_model_name_tag(k)
        is_default_set = model in default_set
        priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set)
        tag = tag.strip('*')

        default_cfg = out[model]

        if priority:
            default_cfg.tags.appendleft(tag)
            default_set.add(model)
        elif has_weights and not default_cfg.is_pretrained:
            default_cfg.tags.appendleft(tag)
        else:
            default_cfg.tags.append(tag)

        if has_weights:
            default_cfg.is_pretrained = True

        default_cfg.cfgs[tag] = v

    return out


def register_model(fn: Callable[..., Any]) -> Callable[..., Any]:
    # lookup containing module
    mod = sys.modules[fn.__module__]
    module_name_split = fn.__module__.split('.')
    module_name = module_name_split[-1] if len(module_name_split) else ''

    # add model to __all__ in module
    model_name = fn.__name__
    if hasattr(mod, '__all__'):
        mod.__all__.append(model_name)
    else:
        mod.__all__ = [model_name]  # type: ignore

    # add entries to registry dict/sets
    if model_name in _model_entrypoints:
        warnings.warn(
            f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being '
            'registered conflicts with an existing name. Please check if this is not expected.',
            stacklevel=2,
        )
    _model_entrypoints[model_name] = fn
    _model_to_module[model_name] = module_name
    _module_to_models[module_name].add(model_name)
    if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs:
        # this will catch all models that have entrypoint matching cfg key, but miss any aliasing
        # entrypoints or non-matching combos
        default_cfg = mod.default_cfgs[model_name]
        if not isinstance(default_cfg, DefaultCfg):
            # new style default cfg dataclass w/ multiple entries per model-arch
            assert isinstance(default_cfg, dict)
            # old style cfg dict per model-arch
            pretrained_cfg = PretrainedCfg(**default_cfg)
            default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg})

        for tag_idx, tag in enumerate(default_cfg.tags):
            is_default = tag_idx == 0
            pretrained_cfg = default_cfg.cfgs[tag]
            model_name_tag = '.'.join([model_name, tag]) if tag else model_name
            replace_items = dict(architecture=model_name, tag=tag if tag else None)
            if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/':
                # auto-complete hub name w/ architecture.tag
                replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag
            pretrained_cfg = replace(pretrained_cfg, **replace_items)

            if is_default:
                _model_pretrained_cfgs[model_name] = pretrained_cfg
                if pretrained_cfg.has_weights:
                    # add tagless entry if it's default and has weights
                    _model_has_pretrained.add(model_name)

            if tag:
                _model_pretrained_cfgs[model_name_tag] = pretrained_cfg
                if pretrained_cfg.has_weights:
                    # add model w/ tag if tag is valid
                    _model_has_pretrained.add(model_name_tag)
                _model_with_tags[model_name].append(model_name_tag)
            else:
                _model_with_tags[model_name].append(model_name)  # has empty tag (to slowly remove these instances)

        _model_default_cfgs[model_name] = default_cfg

    return fn


def _deprecated_model_shim(deprecated_name: str, current_fn: Callable = None, current_tag: str = ''):
    def _fn(pretrained=False, **kwargs):
        assert current_fn is not None,  f'Model {deprecated_name} has been removed with no replacement.'
        current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__
        warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2)
        pretrained_cfg = kwargs.pop('pretrained_cfg', None)
        return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs)
    return _fn


def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]):
    mod = sys.modules[module_name]
    module_name_split = module_name.split('.')
    module_name = module_name_split[-1] if len(module_name_split) else ''

    for deprecated, current in deprecation_map.items():
        if hasattr(mod, '__all__'):
            mod.__all__.append(deprecated)
        current_fn = None
        current_tag = ''
        if current:
            current_name, current_tag = split_model_name_tag(current)
            current_fn = getattr(mod, current_name)
        deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag)
        setattr(mod, deprecated, deprecated_entrypoint_fn)
        _model_entrypoints[deprecated] = deprecated_entrypoint_fn
        _model_to_module[deprecated] = module_name
        _module_to_models[module_name].add(deprecated)
        _deprecated_models[deprecated] = current
        _module_to_deprecated_models[module_name][deprecated] = current


def _natural_key(string_: str) -> List[Union[int, str]]:
    """See https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/"""
    return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]


def _expand_filter(filter: str):
    """ expand a 'base_filter' to 'base_filter.*' if no tag portion"""
    filter_base, filter_tag = split_model_name_tag(filter)
    if not filter_tag:
        return ['.'.join([filter_base, '*']), filter]
    else:
        return [filter]


def list_models(
        filter: Union[str, List[str]] = '',
        module: Union[str, List[str]] = '',
        pretrained: bool = False,
        exclude_filters: Union[str, List[str]] = '',
        name_matches_cfg: bool = False,
        include_tags: Optional[bool] = None,
) -> List[str]:
    """ Return list of available model names, sorted alphabetically

    Args:
        filter - Wildcard filter string that works with fnmatch
        module - Limit model selection to a specific submodule (ie 'vision_transformer')
        pretrained - Include only models with valid pretrained weights if True
        exclude_filters - Wildcard filters to exclude models after including them with filter
        name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases)
        include_tags - Include pretrained tags in model names (model.tag). If None, defaults
            set to True when pretrained=True else False (default: None)

    Returns:
        models - The sorted list of models

    Example:
        model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet'
        model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module
    """
    if filter:
        include_filters = filter if isinstance(filter, (tuple, list)) else [filter]
    else:
        include_filters = []

    if include_tags is None:
        # FIXME should this be default behaviour? or default to include_tags=True?
        include_tags = pretrained

    if not module:
        all_models: Set[str] = set(_model_entrypoints.keys())
    else:
        if isinstance(module, str):
            all_models: Set[str] = _module_to_models[module]
        else:
            assert isinstance(module, Sequence)
            all_models: Set[str] = set()
            for m in module:
                all_models.update(_module_to_models[m])
    all_models = all_models - _deprecated_models.keys()  # remove deprecated models from listings

    if include_tags:
        # expand model names to include names w/ pretrained tags
        models_with_tags: Set[str] = set()
        for m in all_models:
            models_with_tags.update(_model_with_tags[m])
        all_models = models_with_tags
        # expand include and exclude filters to include a '.*' for proper match if no tags in filter
        include_filters = [ef for f in include_filters for ef in _expand_filter(f)]
        exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)]

    if include_filters:
        models: Set[str] = set()
        for f in include_filters:
            include_models = fnmatch.filter(all_models, f)  # include these models
            if len(include_models):
                models = models.union(include_models)
    else:
        models = all_models

    if exclude_filters:
        if not isinstance(exclude_filters, (tuple, list)):
            exclude_filters = [exclude_filters]
        for xf in exclude_filters:
            exclude_models = fnmatch.filter(models, xf)  # exclude these models
            if len(exclude_models):
                models = models.difference(exclude_models)

    if pretrained:
        models = _model_has_pretrained.intersection(models)

    if name_matches_cfg:
        models = set(_model_pretrained_cfgs).intersection(models)

    return sorted(models, key=_natural_key)


def list_pretrained(
        filter: Union[str, List[str]] = '',
        exclude_filters: str = '',
) -> List[str]:
    return list_models(
        filter=filter,
        pretrained=True,
        exclude_filters=exclude_filters,
        include_tags=True,
    )


def get_deprecated_models(module: str = '') -> Dict[str, str]:
    all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models
    return deepcopy(all_deprecated)


def is_model(model_name: str) -> bool:
    """ Check if a model name exists
    """
    arch_name = get_arch_name(model_name)
    return arch_name in _model_entrypoints


def model_entrypoint(model_name: str, module_filter: Optional[str] = None) -> Callable[..., Any]:
    """Fetch a model entrypoint for specified model name
    """
    arch_name = get_arch_name(model_name)
    if module_filter and arch_name not in _module_to_models.get(module_filter, {}):
        raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.')
    return _model_entrypoints[arch_name]


def list_modules() -> List[str]:
    """ Return list of module names that contain models / model entrypoints
    """
    modules = _module_to_models.keys()
    return sorted(modules)


def is_model_in_modules(
        model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]]
) -> bool:
    """Check if a model exists within a subset of modules

    Args:
        model_name - name of model to check
        module_names - names of modules to search in
    """
    arch_name = get_arch_name(model_name)
    assert isinstance(module_names, (tuple, list, set))
    return any(arch_name in _module_to_models[n] for n in module_names)


def is_model_pretrained(model_name: str) -> bool:
    return model_name in _model_has_pretrained


def get_pretrained_cfg(model_name: str, allow_unregistered: bool = True) -> Optional[PretrainedCfg]:
    if model_name in _model_pretrained_cfgs:
        return deepcopy(_model_pretrained_cfgs[model_name])
    arch_name, tag = split_model_name_tag(model_name)
    if arch_name in _model_default_cfgs:
        # if model arch exists, but the tag is wrong, error out
        raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.')
    if allow_unregistered:
        # if model arch doesn't exist, it has no pretrained_cfg registered, allow a default to be created
        return None
    raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.')


def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]:
    """ Get a specific model default_cfg value by key. None if key doesn't exist.
    """
    cfg = get_pretrained_cfg(model_name, allow_unregistered=False)
    return getattr(cfg, cfg_key, None)


def get_arch_pretrained_cfgs(model_name: str) -> Dict[str, PretrainedCfg]:
    """ Get all pretrained cfgs for a given architecture.
    """
    arch_name, _ = split_model_name_tag(model_name)
    model_names = _model_with_tags[arch_name]
    cfgs = {m: _model_pretrained_cfgs[m] for m in model_names}
    return cfgs