File size: 6,281 Bytes
ad283e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
""" PyTorch FX Based Feature Extraction Helpers
Using https://pytorch.org/vision/stable/feature_extraction.html
"""
from typing import Callable, Dict, List, Optional, Union, Tuple, Type

import torch
from torch import nn

from ._features import _get_feature_info, _get_return_layers

try:
    # NOTE we wrap torchvision fns to use timm leaf / no trace definitions
    from torchvision.models.feature_extraction import create_feature_extractor as _create_feature_extractor
    from torchvision.models.feature_extraction import get_graph_node_names as _get_graph_node_names
    has_fx_feature_extraction = True
except ImportError:
    has_fx_feature_extraction = False

# Layers we went to treat as leaf modules
from timm.layers import Conv2dSame, ScaledStdConv2dSame, CondConv2d, StdConv2dSame, Format
from timm.layers import resample_abs_pos_embed, resample_abs_pos_embed_nhwc
from timm.layers.non_local_attn import BilinearAttnTransform
from timm.layers.pool2d_same import MaxPool2dSame, AvgPool2dSame
from timm.layers.norm_act import (
    BatchNormAct2d,
    SyncBatchNormAct,
    FrozenBatchNormAct2d,
    GroupNormAct,
    GroupNorm1Act,
    LayerNormAct,
    LayerNormAct2d
)

__all__ = ['register_notrace_module', 'is_notrace_module', 'get_notrace_modules',
           'register_notrace_function', 'is_notrace_function', 'get_notrace_functions',
           'create_feature_extractor', 'get_graph_node_names', 'FeatureGraphNet', 'GraphExtractNet']


# NOTE: By default, any modules from timm.models.layers that we want to treat as leaf modules go here
# BUT modules from timm.models should use the registration mechanism below
_leaf_modules = {
    BilinearAttnTransform,  # reason: flow control t <= 1
    # Reason: get_same_padding has a max which raises a control flow error
    Conv2dSame, MaxPool2dSame, ScaledStdConv2dSame, StdConv2dSame, AvgPool2dSame,
    CondConv2d,  # reason: TypeError: F.conv2d received Proxy in groups=self.groups * B (because B = x.shape[0]),
    BatchNormAct2d,
    SyncBatchNormAct,
    FrozenBatchNormAct2d,
    GroupNormAct,
    GroupNorm1Act,
    LayerNormAct,
    LayerNormAct2d,
}

try:
    from timm.layers import InplaceAbn
    _leaf_modules.add(InplaceAbn)
except ImportError:
    pass


def register_notrace_module(module: Type[nn.Module]):
    """
    Any module not under timm.models.layers should get this decorator if we don't want to trace through it.
    """
    _leaf_modules.add(module)
    return module


def is_notrace_module(module: Type[nn.Module]):
    return module in _leaf_modules


def get_notrace_modules():
    return list(_leaf_modules)


# Functions we want to autowrap (treat them as leaves)
_autowrap_functions = {
    resample_abs_pos_embed,
    resample_abs_pos_embed_nhwc,
}


def register_notrace_function(func: Callable):
    """
    Decorator for functions which ought not to be traced through
    """
    _autowrap_functions.add(func)
    return func


def is_notrace_function(func: Callable):
    return func in _autowrap_functions


def get_notrace_functions():
    return list(_autowrap_functions)


def get_graph_node_names(model: nn.Module) -> Tuple[List[str], List[str]]:
    return _get_graph_node_names(
        model,
        tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)}
    )


def create_feature_extractor(model: nn.Module, return_nodes: Union[Dict[str, str], List[str]]):
    assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction'
    return _create_feature_extractor(
        model, return_nodes,
        tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)}
    )


class FeatureGraphNet(nn.Module):
    """ A FX Graph based feature extractor that works with the model feature_info metadata
    """
    return_dict: torch.jit.Final[bool]

    def __init__(
            self,
            model: nn.Module,
            out_indices: Tuple[int, ...],
            out_map: Optional[Dict] = None,
            output_fmt: str = 'NCHW',
            return_dict: bool = False,
    ):
        super().__init__()
        assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction'
        self.feature_info = _get_feature_info(model, out_indices)
        if out_map is not None:
            assert len(out_map) == len(out_indices)
        self.output_fmt = Format(output_fmt)
        return_nodes = _get_return_layers(self.feature_info, out_map)
        self.graph_module = create_feature_extractor(model, return_nodes)
        self.return_dict = return_dict

    def forward(self, x):
        out = self.graph_module(x)
        if self.return_dict:
            return out
        return list(out.values())


class GraphExtractNet(nn.Module):
    """ A standalone feature extraction wrapper that maps dict -> list or single tensor
    NOTE:
      * one can use feature_extractor directly if dictionary output is desired
      * unlike FeatureGraphNet, this is intended to be used standalone and not with model feature_info
      metadata for builtin feature extraction mode
      * create_feature_extractor can be used directly if dictionary output is acceptable

    Args:
        model: model to extract features from
        return_nodes: node names to return features from (dict or list)
        squeeze_out: if only one output, and output in list format, flatten to single tensor
        return_dict: return as dictionary from extractor with node names as keys, ignores squeeze_out arg
    """
    return_dict: torch.jit.Final[bool]

    def __init__(
            self,
            model: nn.Module,
            return_nodes: Union[Dict[str, str], List[str]],
            squeeze_out: bool = True,
            return_dict: bool = False,
    ):
        super().__init__()
        self.squeeze_out = squeeze_out
        self.graph_module = create_feature_extractor(model, return_nodes)
        self.return_dict = return_dict

    def forward(self, x) -> Union[List[torch.Tensor], torch.Tensor]:
        out = self.graph_module(x)
        if self.return_dict:
            return out
        out = list(out.values())
        return out[0] if self.squeeze_out and len(out) == 1 else out