File size: 29,547 Bytes
ad283e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
""" BEiT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
@inproceedings{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=p-BhZSz59o4}
}
BEiT-v2 from https://github.com/microsoft/unilm/tree/master/beit2
@article{beitv2,
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
year={2022},
eprint={2208.06366},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
At this point only the 1k fine-tuned classification weights and model configs have been added,
see original source above for pre-training models and procedure.
Modifications by / Copyright 2021 Ross Wightman, original copyrights below
"""
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Hangbo Bao
# Based on timm and DeiT code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import math
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn
from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table, ndgrid
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._registry import generate_default_cfgs, register_model
__all__ = ['Beit']
def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor:
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
window_area = window_size[0] * window_size[1]
coords = torch.stack(ndgrid(torch.arange(window_size[0]), torch.arange(window_size[1]))) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return relative_position_index
class Attention(nn.Module):
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qkv_bias_separate: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.,
window_size: Optional[Tuple[int, int]] = None,
attn_head_dim: Optional[int] = None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv_bias_separate = qkv_bias_separate
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False)
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
self.register_buffer("relative_position_index", gen_relative_position_index(window_size), persistent=False)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def _get_rel_pos_bias(self):
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
return relative_position_bias.unsqueeze(0)
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
B, N, C = x.shape
if self.q_bias is None:
qkv = self.qkv(x)
else:
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
if self.qkv_bias_separate:
qkv = self.qkv(x)
qkv += qkv_bias
else:
qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # B, num_heads, N, head_dim
if self.fused_attn:
rel_pos_bias = None
if self.relative_position_bias_table is not None:
rel_pos_bias = self._get_rel_pos_bias()
if shared_rel_pos_bias is not None:
rel_pos_bias = rel_pos_bias + shared_rel_pos_bias
elif shared_rel_pos_bias is not None:
rel_pos_bias = shared_rel_pos_bias
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=rel_pos_bias,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
attn = attn + self._get_rel_pos_bias()
if shared_rel_pos_bias is not None:
attn = attn + shared_rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
qkv_bias: bool = False,
mlp_ratio: float = 4.,
scale_mlp: bool = False,
swiglu_mlp: bool = False,
proj_drop: float = 0.,
attn_drop: float = 0.,
drop_path: float = 0.,
init_values: Optional[float] = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
window_size: Optional[Tuple[int, int]] = None,
attn_head_dim: Optional[int] = None,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
if swiglu_mlp:
self.mlp = SwiGLU(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
norm_layer=norm_layer if scale_mlp else None,
drop=proj_drop,
)
else:
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
norm_layer=norm_layer if scale_mlp else None,
drop=proj_drop,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
if init_values:
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
if self.gamma_1 is None:
x = x + self.drop_path1(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
x = x + self.drop_path2(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.window_area = window_size[0] * window_size[1]
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
# trunc_normal_(self.relative_position_bias_table, std=.02)
self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
def forward(self):
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_area + 1, self.window_area + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class Beit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
qkv_bias: bool = True,
mlp_ratio: float = 4.,
swiglu_mlp: bool = False,
scale_mlp: bool = False,
drop_rate: float = 0.,
pos_drop_rate: float = 0.,
proj_drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
norm_layer: Callable = LayerNorm,
init_values: Optional[float] = None,
use_abs_pos_emb: bool = True,
use_rel_pos_bias: bool = False,
use_shared_rel_pos_bias: bool = False,
head_init_scale: float = 0.001,
):
super().__init__()
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim # for consistency with other models
self.num_prefix_tokens = 1
self.grad_checkpointing = False
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None
self.pos_drop = nn.Dropout(p=pos_drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_embed.grid_size,
num_heads=num_heads,
)
else:
self.rel_pos_bias = None
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
mlp_ratio=mlp_ratio,
scale_mlp=scale_mlp,
swiglu_mlp=swiglu_mlp,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.grid_size if use_rel_pos_bias else None,
)
for i in range(depth)])
self.feature_info = [
dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)]
use_fc_norm = self.global_pool == 'avg'
self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.fix_init_weight()
if isinstance(self.head, nn.Linear):
trunc_normal_(self.head.weight, std=.02)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
nwd = {'pos_embed', 'cls_token'}
for n, _ in self.named_parameters():
if 'relative_position_bias_table' in n:
nwd.add(n)
return nwd
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))],
)
return matcher
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int]]] = None,
return_prefix_tokens: bool = False,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if an int, if is a sequence, select by matching indices
return_prefix_tokens: Return both prefix and spatial intermediate tokens
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
reshape = output_fmt == 'NCHW'
intermediates = []
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
# forward pass
B, _, height, width = x.shape
x = self.patch_embed(x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x, shared_rel_pos_bias=rel_pos_bias)
if i in take_indices:
# normalize intermediates with final norm layer if enabled
intermediates.append(self.norm(x) if norm else x)
# process intermediates
if self.num_prefix_tokens:
# split prefix (e.g. class, distill) and spatial feature tokens
prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates]
intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates]
if reshape:
# reshape to BCHW output format
H, W = self.patch_embed.dynamic_feat_size((height, width))
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
if not torch.jit.is_scripting() and return_prefix_tokens:
# return_prefix not support in torchscript due to poor type handling
intermediates = list(zip(intermediates, prefix_tokens))
if intermediates_only:
return intermediates
x = self.norm(x)
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_norm:
self.norm = nn.Identity()
if prune_head:
self.fc_norm = nn.Identity()
self.reset_classifier(0, '')
return take_indices
def forward_features(self, x):
x = self.patch_embed(x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
else:
x = blk(x, shared_rel_pos_bias=rel_pos_bias)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.fc_norm(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth',
hf_hub_id='timm/'),
'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_base_patch16_224.in22k_ft_in22k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth',
hf_hub_id='timm/',
num_classes=21841,
),
'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth',
hf_hub_id='timm/'),
'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
hf_hub_id='timm/',
input_size=(3, 512, 512), crop_pct=1.0,
),
'beit_large_patch16_224.in22k_ft_in22k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
hf_hub_id='timm/',
num_classes=21841,
),
'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth',
hf_hub_id='timm/',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_base_patch16_224.in1k_ft_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft1k.pth',
hf_hub_id='timm/',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_base_patch16_224.in1k_ft_in22k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth',
hf_hub_id='timm/',
num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth',
hf_hub_id='timm/',
crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224.in1k_ft_in1k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft1k.pth',
hf_hub_id='timm/',
crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
'beitv2_large_patch16_224.in1k_ft_in22k': _cfg(
#url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth',
hf_hub_id='timm/',
num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
),
})
def checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True):
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('module', state_dict)
# beit v2 didn't strip module
out_dict = {}
for k, v in state_dict.items():
if 'relative_position_index' in k:
continue
if 'patch_embed.proj.weight' in k:
O, I, H, W = model.patch_embed.proj.weight.shape
if v.shape[-1] != W or v.shape[-2] != H:
v = resample_patch_embed(
v,
(H, W),
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
# To resize pos embedding when using model at different size from pretrained weights
num_prefix_tokens = 1
v = resample_abs_pos_embed(
v,
new_size=model.patch_embed.grid_size,
num_prefix_tokens=num_prefix_tokens,
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
elif k.endswith('relative_position_bias_table'):
m = model.get_submodule(k[:-29])
if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]:
v = resize_rel_pos_bias_table(
v,
new_window_size=m.window_size,
new_bias_shape=m.relative_position_bias_table.shape,
)
out_dict[k] = v
return out_dict
def _create_beit(variant, pretrained=False, **kwargs):
out_indices = kwargs.pop('out_indices', 3)
model = build_model_with_cfg(
Beit, variant, pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
return model
@register_model
def beit_base_patch16_224(pretrained=False, **kwargs) -> Beit:
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1)
model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def beit_base_patch16_384(pretrained=False, **kwargs) -> Beit:
model_args = dict(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1)
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def beit_large_patch16_224(pretrained=False, **kwargs) -> Beit:
model_args = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def beit_large_patch16_384(pretrained=False, **kwargs) -> Beit:
model_args = dict(
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def beit_large_patch16_512(pretrained=False, **kwargs) -> Beit:
model_args = dict(
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def beitv2_base_patch16_224(pretrained=False, **kwargs) -> Beit:
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def beitv2_large_patch16_224(pretrained=False, **kwargs) -> Beit:
model_args = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
|