File size: 23,474 Bytes
ad283e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
""" EfficientViT (by MSRA)
Paper: `EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention`
- https://arxiv.org/abs/2305.07027
Adapted from official impl at https://github.com/microsoft/Cream/tree/main/EfficientViT
"""
__all__ = ['EfficientVitMsra']
import itertools
from collections import OrderedDict
from typing import Dict, Optional
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SqueezeExcite, SelectAdaptivePool2d, trunc_normal_, _assert
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs
class ConvNorm(torch.nn.Sequential):
def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
super().__init__()
self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False)
self.bn = nn.BatchNorm2d(out_chs)
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
@torch.no_grad()
def fuse(self):
c, bn = self.conv, self.bn
w = bn.weight / (bn.running_var + bn.eps)**0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
m = torch.nn.Conv2d(
w.size(1) * self.conv.groups, w.size(0), w.shape[2:],
stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class NormLinear(torch.nn.Sequential):
def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.):
super().__init__()
self.bn = nn.BatchNorm1d(in_features)
self.drop = nn.Dropout(drop)
self.linear = nn.Linear(in_features, out_features, bias=bias)
trunc_normal_(self.linear.weight, std=std)
if self.linear.bias is not None:
nn.init.constant_(self.linear.bias, 0)
@torch.no_grad()
def fuse(self):
bn, linear = self.bn, self.linear
w = bn.weight / (bn.running_var + bn.eps)**0.5
b = bn.bias - self.bn.running_mean * \
self.bn.weight / (bn.running_var + bn.eps)**0.5
w = linear.weight * w[None, :]
if linear.bias is None:
b = b @ self.linear.weight.T
else:
b = (linear.weight @ b[:, None]).view(-1) + self.linear.bias
m = torch.nn.Linear(w.size(1), w.size(0))
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class PatchMerging(torch.nn.Module):
def __init__(self, dim, out_dim):
super().__init__()
hid_dim = int(dim * 4)
self.conv1 = ConvNorm(dim, hid_dim, 1, 1, 0)
self.act = torch.nn.ReLU()
self.conv2 = ConvNorm(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim)
self.se = SqueezeExcite(hid_dim, .25)
self.conv3 = ConvNorm(hid_dim, out_dim, 1, 1, 0)
def forward(self, x):
x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x))))))
return x
class ResidualDrop(torch.nn.Module):
def __init__(self, m, drop=0.):
super().__init__()
self.m = m
self.drop = drop
def forward(self, x):
if self.training and self.drop > 0:
return x + self.m(x) * torch.rand(
x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach()
else:
return x + self.m(x)
class ConvMlp(torch.nn.Module):
def __init__(self, ed, h):
super().__init__()
self.pw1 = ConvNorm(ed, h)
self.act = torch.nn.ReLU()
self.pw2 = ConvNorm(h, ed, bn_weight_init=0)
def forward(self, x):
x = self.pw2(self.act(self.pw1(x)))
return x
class CascadedGroupAttention(torch.nn.Module):
attention_bias_cache: Dict[str, torch.Tensor]
r""" Cascaded Group Attention.
Args:
dim (int): Number of input channels.
key_dim (int): The dimension for query and key.
num_heads (int): Number of attention heads.
attn_ratio (int): Multiplier for the query dim for value dimension.
resolution (int): Input resolution, correspond to the window size.
kernels (List[int]): The kernel size of the dw conv on query.
"""
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=14,
kernels=(5, 5, 5, 5),
):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.val_dim = int(attn_ratio * key_dim)
self.attn_ratio = attn_ratio
qkvs = []
dws = []
for i in range(num_heads):
qkvs.append(ConvNorm(dim // (num_heads), self.key_dim * 2 + self.val_dim))
dws.append(ConvNorm(self.key_dim, self.key_dim, kernels[i], 1, kernels[i] // 2, groups=self.key_dim))
self.qkvs = torch.nn.ModuleList(qkvs)
self.dws = torch.nn.ModuleList(dws)
self.proj = torch.nn.Sequential(
torch.nn.ReLU(),
ConvNorm(self.val_dim * num_heads, dim, bn_weight_init=0)
)
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False)
self.attention_bias_cache = {}
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, x):
B, C, H, W = x.shape
feats_in = x.chunk(len(self.qkvs), dim=1)
feats_out = []
feat = feats_in[0]
attn_bias = self.get_attention_biases(x.device)
for head_idx, (qkv, dws) in enumerate(zip(self.qkvs, self.dws)):
if head_idx > 0:
feat = feat + feats_in[head_idx]
feat = qkv(feat)
q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.val_dim], dim=1)
q = dws(q)
q, k, v = q.flatten(2), k.flatten(2), v.flatten(2)
q = q * self.scale
attn = q.transpose(-2, -1) @ k
attn = attn + attn_bias[head_idx]
attn = attn.softmax(dim=-1)
feat = v @ attn.transpose(-2, -1)
feat = feat.view(B, self.val_dim, H, W)
feats_out.append(feat)
x = self.proj(torch.cat(feats_out, 1))
return x
class LocalWindowAttention(torch.nn.Module):
r""" Local Window Attention.
Args:
dim (int): Number of input channels.
key_dim (int): The dimension for query and key.
num_heads (int): Number of attention heads.
attn_ratio (int): Multiplier for the query dim for value dimension.
resolution (int): Input resolution.
window_resolution (int): Local window resolution.
kernels (List[int]): The kernel size of the dw conv on query.
"""
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=14,
window_resolution=7,
kernels=(5, 5, 5, 5),
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.resolution = resolution
assert window_resolution > 0, 'window_size must be greater than 0'
self.window_resolution = window_resolution
window_resolution = min(window_resolution, resolution)
self.attn = CascadedGroupAttention(
dim, key_dim, num_heads,
attn_ratio=attn_ratio,
resolution=window_resolution,
kernels=kernels,
)
def forward(self, x):
H = W = self.resolution
B, C, H_, W_ = x.shape
# Only check this for classifcation models
_assert(H == H_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}')
_assert(W == W_, f'input feature has wrong size, expect {(H, W)}, got {(H_, W_)}')
if H <= self.window_resolution and W <= self.window_resolution:
x = self.attn(x)
else:
x = x.permute(0, 2, 3, 1)
pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution
pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution
x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_resolution
nW = pW // self.window_resolution
# window partition, BHWC -> B(nHh)(nWw)C -> BnHnWhwC -> (BnHnW)hwC -> (BnHnW)Chw
x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3)
x = x.reshape(B * nH * nW, self.window_resolution, self.window_resolution, C).permute(0, 3, 1, 2)
x = self.attn(x)
# window reverse, (BnHnW)Chw -> (BnHnW)hwC -> BnHnWhwC -> B(nHh)(nWw)C -> BHWC
x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C)
x = x.transpose(2, 3).reshape(B, pH, pW, C)
x = x[:, :H, :W].contiguous()
x = x.permute(0, 3, 1, 2)
return x
class EfficientVitBlock(torch.nn.Module):
""" A basic EfficientVit building block.
Args:
dim (int): Number of input channels.
key_dim (int): Dimension for query and key in the token mixer.
num_heads (int): Number of attention heads.
attn_ratio (int): Multiplier for the query dim for value dimension.
resolution (int): Input resolution.
window_resolution (int): Local window resolution.
kernels (List[int]): The kernel size of the dw conv on query.
"""
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=14,
window_resolution=7,
kernels=[5, 5, 5, 5],
):
super().__init__()
self.dw0 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.))
self.ffn0 = ResidualDrop(ConvMlp(dim, int(dim * 2)))
self.mixer = ResidualDrop(
LocalWindowAttention(
dim, key_dim, num_heads,
attn_ratio=attn_ratio,
resolution=resolution,
window_resolution=window_resolution,
kernels=kernels,
)
)
self.dw1 = ResidualDrop(ConvNorm(dim, dim, 3, 1, 1, groups=dim, bn_weight_init=0.))
self.ffn1 = ResidualDrop(ConvMlp(dim, int(dim * 2)))
def forward(self, x):
return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x)))))
class EfficientVitStage(torch.nn.Module):
def __init__(
self,
in_dim,
out_dim,
key_dim,
downsample=('', 1),
num_heads=8,
attn_ratio=4,
resolution=14,
window_resolution=7,
kernels=[5, 5, 5, 5],
depth=1,
):
super().__init__()
if downsample[0] == 'subsample':
self.resolution = (resolution - 1) // downsample[1] + 1
down_blocks = []
down_blocks.append((
'res1',
torch.nn.Sequential(
ResidualDrop(ConvNorm(in_dim, in_dim, 3, 1, 1, groups=in_dim)),
ResidualDrop(ConvMlp(in_dim, int(in_dim * 2))),
)
))
down_blocks.append(('patchmerge', PatchMerging(in_dim, out_dim)))
down_blocks.append((
'res2',
torch.nn.Sequential(
ResidualDrop(ConvNorm(out_dim, out_dim, 3, 1, 1, groups=out_dim)),
ResidualDrop(ConvMlp(out_dim, int(out_dim * 2))),
)
))
self.downsample = nn.Sequential(OrderedDict(down_blocks))
else:
assert in_dim == out_dim
self.downsample = nn.Identity()
self.resolution = resolution
blocks = []
for d in range(depth):
blocks.append(EfficientVitBlock(out_dim, key_dim, num_heads, attn_ratio, self.resolution, window_resolution, kernels))
self.blocks = nn.Sequential(*blocks)
def forward(self, x):
x = self.downsample(x)
x = self.blocks(x)
return x
class PatchEmbedding(torch.nn.Sequential):
def __init__(self, in_chans, dim):
super().__init__()
self.add_module('conv1', ConvNorm(in_chans, dim // 8, 3, 2, 1))
self.add_module('relu1', torch.nn.ReLU())
self.add_module('conv2', ConvNorm(dim // 8, dim // 4, 3, 2, 1))
self.add_module('relu2', torch.nn.ReLU())
self.add_module('conv3', ConvNorm(dim // 4, dim // 2, 3, 2, 1))
self.add_module('relu3', torch.nn.ReLU())
self.add_module('conv4', ConvNorm(dim // 2, dim, 3, 2, 1))
self.patch_size = 16
class EfficientVitMsra(nn.Module):
def __init__(
self,
img_size=224,
in_chans=3,
num_classes=1000,
embed_dim=(64, 128, 192),
key_dim=(16, 16, 16),
depth=(1, 2, 3),
num_heads=(4, 4, 4),
window_size=(7, 7, 7),
kernels=(5, 5, 5, 5),
down_ops=(('', 1), ('subsample', 2), ('subsample', 2)),
global_pool='avg',
drop_rate=0.,
):
super(EfficientVitMsra, self).__init__()
self.grad_checkpointing = False
self.num_classes = num_classes
self.drop_rate = drop_rate
# Patch embedding
self.patch_embed = PatchEmbedding(in_chans, embed_dim[0])
stride = self.patch_embed.patch_size
resolution = img_size // self.patch_embed.patch_size
attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))]
# Build EfficientVit blocks
self.feature_info = []
stages = []
pre_ed = embed_dim[0]
for i, (ed, kd, dpth, nh, ar, wd, do) in enumerate(
zip(embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)):
stage = EfficientVitStage(
in_dim=pre_ed,
out_dim=ed,
key_dim=kd,
downsample=do,
num_heads=nh,
attn_ratio=ar,
resolution=resolution,
window_resolution=wd,
kernels=kernels,
depth=dpth,
)
pre_ed = ed
if do[0] == 'subsample' and i != 0:
stride *= do[1]
resolution = stage.resolution
stages.append(stage)
self.feature_info += [dict(num_chs=ed, reduction=stride, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
if global_pool == 'avg':
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
else:
assert num_classes == 0
self.global_pool = nn.Identity()
self.num_features = self.head_hidden_size = embed_dim[-1]
self.head = NormLinear(
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity()
@torch.jit.ignore
def no_weight_decay(self):
return {x for x in self.state_dict().keys() if 'attention_biases' in x}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^patch_embed',
blocks=r'^stages\.(\d+)' if coarse else [
(r'^stages\.(\d+).downsample', (0,)),
(r'^stages\.(\d+)\.\w+\.(\d+)', None),
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head.linear
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
if global_pool is not None:
if global_pool == 'avg':
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
else:
assert num_classes == 0
self.global_pool = nn.Identity()
self.head = NormLinear(
self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else torch.nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stages, x)
else:
x = self.stages(x)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
# def checkpoint_filter_fn(state_dict, model):
# if 'model' in state_dict.keys():
# state_dict = state_dict['model']
# tmp_dict = {}
# out_dict = {}
# target_keys = model.state_dict().keys()
# target_keys = [k for k in target_keys if k.startswith('stages.')]
#
# for k, v in state_dict.items():
# if 'attention_bias_idxs' in k:
# continue
# k = k.split('.')
# if k[-2] == 'c':
# k[-2] = 'conv'
# if k[-2] == 'l':
# k[-2] = 'linear'
# k = '.'.join(k)
# tmp_dict[k] = v
#
# for k, v in tmp_dict.items():
# if k.startswith('patch_embed'):
# k = k.split('.')
# k[1] = 'conv' + str(int(k[1]) // 2 + 1)
# k = '.'.join(k)
# elif k.startswith('blocks'):
# kw = '.'.join(k.split('.')[2:])
# find_kw = [a for a in list(sorted(tmp_dict.keys())) if kw in a]
# idx = find_kw.index(k)
# k = [a for a in target_keys if kw in a][idx]
# out_dict[k] = v
#
# return out_dict
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000,
'mean': IMAGENET_DEFAULT_MEAN,
'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.conv1.conv',
'classifier': 'head.linear',
'fixed_input_size': True,
'pool_size': (4, 4),
**kwargs,
}
default_cfgs = generate_default_cfgs({
'efficientvit_m0.r224_in1k': _cfg(
hf_hub_id='timm/',
#url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m0.pth'
),
'efficientvit_m1.r224_in1k': _cfg(
hf_hub_id='timm/',
#url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m1.pth'
),
'efficientvit_m2.r224_in1k': _cfg(
hf_hub_id='timm/',
#url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m2.pth'
),
'efficientvit_m3.r224_in1k': _cfg(
hf_hub_id='timm/',
#url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m3.pth'
),
'efficientvit_m4.r224_in1k': _cfg(
hf_hub_id='timm/',
#url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m4.pth'
),
'efficientvit_m5.r224_in1k': _cfg(
hf_hub_id='timm/',
#url='https://github.com/xinyuliu-jeffrey/EfficientVit_Model_Zoo/releases/download/v1.0/efficientvit_m5.pth'
),
})
def _create_efficientvit_msra(variant, pretrained=False, **kwargs):
out_indices = kwargs.pop('out_indices', (0, 1, 2))
model = build_model_with_cfg(
EfficientVitMsra,
variant,
pretrained,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs
)
return model
@register_model
def efficientvit_m0(pretrained=False, **kwargs):
model_args = dict(
img_size=224,
embed_dim=[64, 128, 192],
depth=[1, 2, 3],
num_heads=[4, 4, 4],
window_size=[7, 7, 7],
kernels=[5, 5, 5, 5]
)
return _create_efficientvit_msra('efficientvit_m0', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientvit_m1(pretrained=False, **kwargs):
model_args = dict(
img_size=224,
embed_dim=[128, 144, 192],
depth=[1, 2, 3],
num_heads=[2, 3, 3],
window_size=[7, 7, 7],
kernels=[7, 5, 3, 3]
)
return _create_efficientvit_msra('efficientvit_m1', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientvit_m2(pretrained=False, **kwargs):
model_args = dict(
img_size=224,
embed_dim=[128, 192, 224],
depth=[1, 2, 3],
num_heads=[4, 3, 2],
window_size=[7, 7, 7],
kernels=[7, 5, 3, 3]
)
return _create_efficientvit_msra('efficientvit_m2', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientvit_m3(pretrained=False, **kwargs):
model_args = dict(
img_size=224,
embed_dim=[128, 240, 320],
depth=[1, 2, 3],
num_heads=[4, 3, 4],
window_size=[7, 7, 7],
kernels=[5, 5, 5, 5]
)
return _create_efficientvit_msra('efficientvit_m3', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientvit_m4(pretrained=False, **kwargs):
model_args = dict(
img_size=224,
embed_dim=[128, 256, 384],
depth=[1, 2, 3],
num_heads=[4, 4, 4],
window_size=[7, 7, 7],
kernels=[7, 5, 3, 3]
)
return _create_efficientvit_msra('efficientvit_m4', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientvit_m5(pretrained=False, **kwargs):
model_args = dict(
img_size=224,
embed_dim=[192, 288, 384],
depth=[1, 3, 4],
num_heads=[3, 3, 4],
window_size=[7, 7, 7],
kernels=[7, 5, 3, 3]
)
return _create_efficientvit_msra('efficientvit_m5', pretrained=pretrained, **dict(model_args, **kwargs))
|