File size: 20,120 Bytes
abee7a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
import math
import numbers
import random
import warnings
from typing import List, Sequence, Tuple, Union
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
try:
from torchvision.transforms.functional import InterpolationMode
has_interpolation_mode = True
except ImportError:
has_interpolation_mode = False
from PIL import Image
import numpy as np
__all__ = [
"ToNumpy", "ToTensor", "str_to_interp_mode", "str_to_pil_interp", "interp_mode_to_str",
"RandomResizedCropAndInterpolation", "CenterCropOrPad", "center_crop_or_pad", "crop_or_pad",
"RandomCropOrPad", "RandomPad", "ResizeKeepRatio", "TrimBorder", "MaybeToTensor", "MaybePILToTensor"
]
class ToNumpy:
def __call__(self, pil_img):
np_img = np.array(pil_img, dtype=np.uint8)
if np_img.ndim < 3:
np_img = np.expand_dims(np_img, axis=-1)
np_img = np.rollaxis(np_img, 2) # HWC to CHW
return np_img
class ToTensor:
""" ToTensor with no rescaling of values"""
def __init__(self, dtype=torch.float32):
self.dtype = dtype
def __call__(self, pil_img):
return F.pil_to_tensor(pil_img).to(dtype=self.dtype)
class MaybeToTensor(transforms.ToTensor):
"""Convert a PIL Image or ndarray to tensor if it's not already one.
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, pic) -> torch.Tensor:
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return F.to_tensor(pic)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
class MaybePILToTensor:
"""Convert a PIL Image to a tensor of the same type - this does not scale values.
"""
def __init__(self) -> None:
super().__init__()
def __call__(self, pic):
"""
Note: A deep copy of the underlying array is performed.
Args:
pic (PIL Image): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return F.pil_to_tensor(pic)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
# Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in
# favor of the Image.Resampling enum. The top-level resampling attributes will be
# removed in Pillow 10.
if hasattr(Image, "Resampling"):
_pil_interpolation_to_str = {
Image.Resampling.NEAREST: 'nearest',
Image.Resampling.BILINEAR: 'bilinear',
Image.Resampling.BICUBIC: 'bicubic',
Image.Resampling.BOX: 'box',
Image.Resampling.HAMMING: 'hamming',
Image.Resampling.LANCZOS: 'lanczos',
}
else:
_pil_interpolation_to_str = {
Image.NEAREST: 'nearest',
Image.BILINEAR: 'bilinear',
Image.BICUBIC: 'bicubic',
Image.BOX: 'box',
Image.HAMMING: 'hamming',
Image.LANCZOS: 'lanczos',
}
_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()}
if has_interpolation_mode:
_torch_interpolation_to_str = {
InterpolationMode.NEAREST: 'nearest',
InterpolationMode.BILINEAR: 'bilinear',
InterpolationMode.BICUBIC: 'bicubic',
InterpolationMode.BOX: 'box',
InterpolationMode.HAMMING: 'hamming',
InterpolationMode.LANCZOS: 'lanczos',
}
_str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()}
else:
_pil_interpolation_to_torch = {}
_torch_interpolation_to_str = {}
def str_to_pil_interp(mode_str):
return _str_to_pil_interpolation[mode_str]
def str_to_interp_mode(mode_str):
if has_interpolation_mode:
return _str_to_torch_interpolation[mode_str]
else:
return _str_to_pil_interpolation[mode_str]
def interp_mode_to_str(mode):
if has_interpolation_mode:
return _torch_interpolation_to_str[mode]
else:
return _pil_interpolation_to_str[mode]
_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic'))
def _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
return size
class RandomResizedCropAndInterpolation:
"""Crop the given PIL Image to random size and aspect ratio with random interpolation.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation='bilinear',
):
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("range should be of kind (min, max)")
if interpolation == 'random':
self.interpolation = _RANDOM_INTERPOLATION
else:
self.interpolation = str_to_interp_mode(interpolation)
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
img_w, img_h = F.get_image_size(img)
area = img_w * img_h
for attempt in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
target_w = int(round(math.sqrt(target_area * aspect_ratio)))
target_h = int(round(math.sqrt(target_area / aspect_ratio)))
if target_w <= img_w and target_h <= img_h:
i = random.randint(0, img_h - target_h)
j = random.randint(0, img_w - target_w)
return i, j, target_h, target_w
# Fallback to central crop
in_ratio = img_w / img_h
if in_ratio < min(ratio):
target_w = img_w
target_h = int(round(target_w / min(ratio)))
elif in_ratio > max(ratio):
target_h = img_h
target_w = int(round(target_h * max(ratio)))
else: # whole image
target_w = img_w
target_h = img_h
i = (img_h - target_h) // 2
j = (img_w - target_w) // 2
return i, j, target_h, target_w
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
return F.resized_crop(img, i, j, h, w, self.size, interpolation)
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
else:
interpolate_str = interp_mode_to_str(self.interpolation)
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0})'.format(interpolate_str)
return format_string
def center_crop_or_pad(
img: torch.Tensor,
output_size: Union[int, List[int]],
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
) -> torch.Tensor:
"""Center crops and/or pads the given image.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
img (PIL Image or Tensor): Image to be cropped.
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
it is used for both directions.
fill (int, Tuple[int]): Padding color
Returns:
PIL Image or Tensor: Cropped image.
"""
output_size = _setup_size(output_size)
crop_height, crop_width = output_size
_, image_height, image_width = F.get_dimensions(img)
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode)
_, image_height, image_width = F.get_dimensions(img)
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
class CenterCropOrPad(torch.nn.Module):
"""Crops the given image at the center.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
"""
def __init__(
self,
size: Union[int, List[int]],
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
):
super().__init__()
self.size = _setup_size(size)
self.fill = fill
self.padding_mode = padding_mode
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
return center_crop_or_pad(img, self.size, fill=self.fill, padding_mode=self.padding_mode)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
def crop_or_pad(
img: torch.Tensor,
top: int,
left: int,
height: int,
width: int,
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
) -> torch.Tensor:
""" Crops and/or pads image to meet target size, with control over fill and padding_mode.
"""
_, image_height, image_width = F.get_dimensions(img)
right = left + width
bottom = top + height
if left < 0 or top < 0 or right > image_width or bottom > image_height:
padding_ltrb = [
max(-left + min(0, right), 0),
max(-top + min(0, bottom), 0),
max(right - max(image_width, left), 0),
max(bottom - max(image_height, top), 0),
]
img = F.pad(img, padding_ltrb, fill=fill, padding_mode=padding_mode)
top = max(top, 0)
left = max(left, 0)
return F.crop(img, top, left, height, width)
class RandomCropOrPad(torch.nn.Module):
""" Crop and/or pad image with random placement within the crop or pad margin.
"""
def __init__(
self,
size: Union[int, List[int]],
fill: Union[int, Tuple[int, int, int]] = 0,
padding_mode: str = 'constant',
):
super().__init__()
self.size = _setup_size(size)
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, size):
_, image_height, image_width = F.get_dimensions(img)
delta_height = image_height - size[0]
delta_width = image_width - size[1]
top = int(math.copysign(random.randint(0, abs(delta_height)), delta_height))
left = int(math.copysign(random.randint(0, abs(delta_width)), delta_width))
return top, left
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
top, left = self.get_params(img, self.size)
return crop_or_pad(
img,
top=top,
left=left,
height=self.size[0],
width=self.size[1],
fill=self.fill,
padding_mode=self.padding_mode,
)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
class RandomPad:
def __init__(self, input_size, fill=0):
self.input_size = input_size
self.fill = fill
@staticmethod
def get_params(img, input_size):
width, height = F.get_image_size(img)
delta_width = max(input_size[1] - width, 0)
delta_height = max(input_size[0] - height, 0)
pad_left = random.randint(0, delta_width)
pad_top = random.randint(0, delta_height)
pad_right = delta_width - pad_left
pad_bottom = delta_height - pad_top
return pad_left, pad_top, pad_right, pad_bottom
def __call__(self, img):
padding = self.get_params(img, self.input_size)
img = F.pad(img, padding, self.fill)
return img
class ResizeKeepRatio:
""" Resize and Keep Aspect Ratio
"""
def __init__(
self,
size,
longest=0.,
interpolation='bilinear',
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_scale_area=False,
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11),
):
"""
Args:
size:
longest:
interpolation:
random_scale_prob:
random_scale_range:
random_scale_area:
random_aspect_prob:
random_aspect_range:
"""
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
if interpolation == 'random':
self.interpolation = _RANDOM_INTERPOLATION
else:
self.interpolation = str_to_interp_mode(interpolation)
self.longest = float(longest)
self.random_scale_prob = random_scale_prob
self.random_scale_range = random_scale_range
self.random_scale_area = random_scale_area
self.random_aspect_prob = random_aspect_prob
self.random_aspect_range = random_aspect_range
@staticmethod
def get_params(
img,
target_size,
longest,
random_scale_prob=0.,
random_scale_range=(1.0, 1.33),
random_scale_area=False,
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
"""Get parameters
"""
img_h, img_w = img_size = F.get_dimensions(img)[1:]
target_h, target_w = target_size
ratio_h = img_h / target_h
ratio_w = img_w / target_w
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
if random_scale_prob > 0 and random.random() < random_scale_prob:
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
if random_scale_area:
# make ratio factor equivalent to RRC area crop where < 1.0 = area zoom,
# otherwise like affine scale where < 1.0 = linear zoom out
ratio_factor = 1. / math.sqrt(ratio_factor)
ratio_factor = (ratio_factor, ratio_factor)
else:
ratio_factor = (1., 1.)
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
log_aspect = (math.log(random_aspect_range[0]), math.log(random_aspect_range[1]))
aspect_factor = math.exp(random.uniform(*log_aspect))
aspect_factor = math.sqrt(aspect_factor)
# currently applying random aspect adjustment equally to both dims,
# could change to keep output sizes above their target where possible
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
size = [round(x * f / ratio) for x, f in zip(img_size, ratio_factor)]
return size
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
"""
size = self.get_params(
img, self.size, self.longest,
self.random_scale_prob, self.random_scale_range, self.random_scale_area,
self.random_aspect_prob, self.random_aspect_range
)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
img = F.resize(img, size, interpolation)
return img
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
else:
interpolate_str = interp_mode_to_str(self.interpolation)
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += f', interpolation={interpolate_str}'
format_string += f', longest={self.longest:.3f}'
format_string += f', random_scale_prob={self.random_scale_prob:.3f}'
format_string += f', random_scale_range=(' \
f'{self.random_scale_range[0]:.3f}, {self.random_aspect_range[1]:.3f})'
format_string += f', random_aspect_prob={self.random_aspect_prob:.3f}'
format_string += f', random_aspect_range=(' \
f'{self.random_aspect_range[0]:.3f}, {self.random_aspect_range[1]:.3f}))'
return format_string
class TrimBorder(torch.nn.Module):
def __init__(
self,
border_size: int,
):
super().__init__()
self.border_size = border_size
def forward(self, img):
w, h = F.get_image_size(img)
top = left = self.border_size
top = min(top, h)
left = min(left, h)
height = max(0, h - 2 * self.border_size)
width = max(0, w - 2 * self.border_size)
return F.crop(img, top, left, height, width) |