""" An implementation of GhostNet & GhostNetV2 Models as defined in: GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf The train script & code of models at: Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py """ import math from functools import partial from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, Linear, make_divisible from ._builder import build_model_with_cfg from ._efficientnet_blocks import SqueezeExcite, ConvBnAct from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['GhostNet'] _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class GhostModule(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, ratio=2, dw_size=3, stride=1, use_act=True, act_layer=nn.ReLU, ): super(GhostModule, self).__init__() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.out_chs, :, :] class GhostModuleV2(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, ratio=2, dw_size=3, stride=1, use_act=True, act_layer=nn.ReLU, ): super().__init__() self.gate_fn = nn.Sigmoid() self.out_chs = out_chs init_chs = math.ceil(out_chs / ratio) new_chs = init_chs * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), act_layer(inplace=True) if use_act else nn.Identity(), ) self.short_conv = nn.Sequential( nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out[:, :self.out_chs, :, :] * F.interpolate( self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__( self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0., mode='original', ): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion if mode == 'original': self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer) else: self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class GhostNet(nn.Module): def __init__( self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, version='v1', ): super(GhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) stage_idx = 0 layer_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layer_kwargs = {} if version == 'v2' and layer_idx > 1: layer_kwargs['mode'] = 'attn' layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs)) prev_chs = out_chs layer_idx += 1 if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = prev_chs self.head_hidden_size = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() # FIXME init @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^conv_stem|bn1', blocks=[ (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), (r'conv_head', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.classifier def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return x if pre_logits else self.classifier(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model: nn.Module): out_dict = {} for k, v in state_dict.items(): if 'total' in k: continue out_dict[k] = v return out_dict def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): """ Constructs a GhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 16, 16, 0, 1]], # stage2 [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], # stage3 [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], # stage4 [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1] ], # stage5 [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( GhostNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **model_kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'ghostnet_050.untrained': _cfg(), 'ghostnet_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth' ), 'ghostnet_130.untrained': _cfg(), 'ghostnetv2_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_10.pth.tar' ), 'ghostnetv2_130.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_13.pth.tar' ), 'ghostnetv2_160.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/GhostNetV2/ck_ghostnetv2_16.pth.tar' ), }) @register_model def ghostnet_050(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-0.5x """ model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_100(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-1.0x """ model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def ghostnet_130(pretrained=False, **kwargs) -> GhostNet: """ GhostNet-1.3x """ model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model @register_model def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.0x """ model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.3x """ model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs) return model @register_model def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet: """ GhostNetV2-1.6x """ model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs) return model