""" Model Registry Hacked together by / Copyright 2020 Ross Wightman """ import fnmatch import re import sys import warnings from collections import defaultdict, deque from copy import deepcopy from dataclasses import replace from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple from ._pretrained import PretrainedCfg, DefaultCfg __all__ = [ 'split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs', 'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', 'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_pretrained_cfgs' ] _module_to_models: Dict[str, Set[str]] = defaultdict(set) # dict of sets to check membership of model in module _model_to_module: Dict[str, str] = {} # mapping of model names to module names _model_entrypoints: Dict[str, Callable[..., Any]] = {} # mapping of model names to architecture entrypoint fns _model_has_pretrained: Set[str] = set() # set of model names that have pretrained weight url present _model_default_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch -> default cfg objects _model_pretrained_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch.tag -> pretrained cfgs _model_with_tags: Dict[str, List[str]] = defaultdict(list) # shortcut to map each model arch to all model + tag names _module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict) _deprecated_models: Dict[str, Optional[str]] = {} def split_model_name_tag(model_name: str, no_tag: str = '') -> Tuple[str, str]: model_name, *tag_list = model_name.split('.', 1) tag = tag_list[0] if tag_list else no_tag return model_name, tag def get_arch_name(model_name: str) -> str: return split_model_name_tag(model_name)[0] def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]): out = defaultdict(DefaultCfg) default_set = set() # no tag and tags ending with * are prioritized as default for k, v in cfgs.items(): if isinstance(v, dict): v = PretrainedCfg(**v) has_weights = v.has_weights model, tag = split_model_name_tag(k) is_default_set = model in default_set priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set) tag = tag.strip('*') default_cfg = out[model] if priority: default_cfg.tags.appendleft(tag) default_set.add(model) elif has_weights and not default_cfg.is_pretrained: default_cfg.tags.appendleft(tag) else: default_cfg.tags.append(tag) if has_weights: default_cfg.is_pretrained = True default_cfg.cfgs[tag] = v return out def register_model(fn: Callable[..., Any]) -> Callable[..., Any]: # lookup containing module mod = sys.modules[fn.__module__] module_name_split = fn.__module__.split('.') module_name = module_name_split[-1] if len(module_name_split) else '' # add model to __all__ in module model_name = fn.__name__ if hasattr(mod, '__all__'): mod.__all__.append(model_name) else: mod.__all__ = [model_name] # type: ignore # add entries to registry dict/sets if model_name in _model_entrypoints: warnings.warn( f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being ' 'registered conflicts with an existing name. Please check if this is not expected.', stacklevel=2, ) _model_entrypoints[model_name] = fn _model_to_module[model_name] = module_name _module_to_models[module_name].add(model_name) if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: # this will catch all models that have entrypoint matching cfg key, but miss any aliasing # entrypoints or non-matching combos default_cfg = mod.default_cfgs[model_name] if not isinstance(default_cfg, DefaultCfg): # new style default cfg dataclass w/ multiple entries per model-arch assert isinstance(default_cfg, dict) # old style cfg dict per model-arch pretrained_cfg = PretrainedCfg(**default_cfg) default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg}) for tag_idx, tag in enumerate(default_cfg.tags): is_default = tag_idx == 0 pretrained_cfg = default_cfg.cfgs[tag] model_name_tag = '.'.join([model_name, tag]) if tag else model_name replace_items = dict(architecture=model_name, tag=tag if tag else None) if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/': # auto-complete hub name w/ architecture.tag replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag pretrained_cfg = replace(pretrained_cfg, **replace_items) if is_default: _model_pretrained_cfgs[model_name] = pretrained_cfg if pretrained_cfg.has_weights: # add tagless entry if it's default and has weights _model_has_pretrained.add(model_name) if tag: _model_pretrained_cfgs[model_name_tag] = pretrained_cfg if pretrained_cfg.has_weights: # add model w/ tag if tag is valid _model_has_pretrained.add(model_name_tag) _model_with_tags[model_name].append(model_name_tag) else: _model_with_tags[model_name].append(model_name) # has empty tag (to slowly remove these instances) _model_default_cfgs[model_name] = default_cfg return fn def _deprecated_model_shim(deprecated_name: str, current_fn: Callable = None, current_tag: str = ''): def _fn(pretrained=False, **kwargs): assert current_fn is not None, f'Model {deprecated_name} has been removed with no replacement.' current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__ warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2) pretrained_cfg = kwargs.pop('pretrained_cfg', None) return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs) return _fn def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]): mod = sys.modules[module_name] module_name_split = module_name.split('.') module_name = module_name_split[-1] if len(module_name_split) else '' for deprecated, current in deprecation_map.items(): if hasattr(mod, '__all__'): mod.__all__.append(deprecated) current_fn = None current_tag = '' if current: current_name, current_tag = split_model_name_tag(current) current_fn = getattr(mod, current_name) deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag) setattr(mod, deprecated, deprecated_entrypoint_fn) _model_entrypoints[deprecated] = deprecated_entrypoint_fn _model_to_module[deprecated] = module_name _module_to_models[module_name].add(deprecated) _deprecated_models[deprecated] = current _module_to_deprecated_models[module_name][deprecated] = current def _natural_key(string_: str) -> List[Union[int, str]]: """See https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/""" return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def _expand_filter(filter: str): """ expand a 'base_filter' to 'base_filter.*' if no tag portion""" filter_base, filter_tag = split_model_name_tag(filter) if not filter_tag: return ['.'.join([filter_base, '*']), filter] else: return [filter] def list_models( filter: Union[str, List[str]] = '', module: Union[str, List[str]] = '', pretrained: bool = False, exclude_filters: Union[str, List[str]] = '', name_matches_cfg: bool = False, include_tags: Optional[bool] = None, ) -> List[str]: """ Return list of available model names, sorted alphabetically Args: filter - Wildcard filter string that works with fnmatch module - Limit model selection to a specific submodule (ie 'vision_transformer') pretrained - Include only models with valid pretrained weights if True exclude_filters - Wildcard filters to exclude models after including them with filter name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases) include_tags - Include pretrained tags in model names (model.tag). If None, defaults set to True when pretrained=True else False (default: None) Returns: models - The sorted list of models Example: model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module """ if filter: include_filters = filter if isinstance(filter, (tuple, list)) else [filter] else: include_filters = [] if include_tags is None: # FIXME should this be default behaviour? or default to include_tags=True? include_tags = pretrained if not module: all_models: Set[str] = set(_model_entrypoints.keys()) else: if isinstance(module, str): all_models: Set[str] = _module_to_models[module] else: assert isinstance(module, Sequence) all_models: Set[str] = set() for m in module: all_models.update(_module_to_models[m]) all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings if include_tags: # expand model names to include names w/ pretrained tags models_with_tags: Set[str] = set() for m in all_models: models_with_tags.update(_model_with_tags[m]) all_models = models_with_tags # expand include and exclude filters to include a '.*' for proper match if no tags in filter include_filters = [ef for f in include_filters for ef in _expand_filter(f)] exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)] if include_filters: models: Set[str] = set() for f in include_filters: include_models = fnmatch.filter(all_models, f) # include these models if len(include_models): models = models.union(include_models) else: models = all_models if exclude_filters: if not isinstance(exclude_filters, (tuple, list)): exclude_filters = [exclude_filters] for xf in exclude_filters: exclude_models = fnmatch.filter(models, xf) # exclude these models if len(exclude_models): models = models.difference(exclude_models) if pretrained: models = _model_has_pretrained.intersection(models) if name_matches_cfg: models = set(_model_pretrained_cfgs).intersection(models) return sorted(models, key=_natural_key) def list_pretrained( filter: Union[str, List[str]] = '', exclude_filters: str = '', ) -> List[str]: return list_models( filter=filter, pretrained=True, exclude_filters=exclude_filters, include_tags=True, ) def get_deprecated_models(module: str = '') -> Dict[str, str]: all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models return deepcopy(all_deprecated) def is_model(model_name: str) -> bool: """ Check if a model name exists """ arch_name = get_arch_name(model_name) return arch_name in _model_entrypoints def model_entrypoint(model_name: str, module_filter: Optional[str] = None) -> Callable[..., Any]: """Fetch a model entrypoint for specified model name """ arch_name = get_arch_name(model_name) if module_filter and arch_name not in _module_to_models.get(module_filter, {}): raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.') return _model_entrypoints[arch_name] def list_modules() -> List[str]: """ Return list of module names that contain models / model entrypoints """ modules = _module_to_models.keys() return sorted(modules) def is_model_in_modules( model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]] ) -> bool: """Check if a model exists within a subset of modules Args: model_name - name of model to check module_names - names of modules to search in """ arch_name = get_arch_name(model_name) assert isinstance(module_names, (tuple, list, set)) return any(arch_name in _module_to_models[n] for n in module_names) def is_model_pretrained(model_name: str) -> bool: return model_name in _model_has_pretrained def get_pretrained_cfg(model_name: str, allow_unregistered: bool = True) -> Optional[PretrainedCfg]: if model_name in _model_pretrained_cfgs: return deepcopy(_model_pretrained_cfgs[model_name]) arch_name, tag = split_model_name_tag(model_name) if arch_name in _model_default_cfgs: # if model arch exists, but the tag is wrong, error out raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.') if allow_unregistered: # if model arch doesn't exist, it has no pretrained_cfg registered, allow a default to be created return None raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.') def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]: """ Get a specific model default_cfg value by key. None if key doesn't exist. """ cfg = get_pretrained_cfg(model_name, allow_unregistered=False) return getattr(cfg, cfg_key, None) def get_arch_pretrained_cfgs(model_name: str) -> Dict[str, PretrainedCfg]: """ Get all pretrained cfgs for a given architecture. """ arch_name, _ = split_model_name_tag(model_name) model_names = _model_with_tags[arch_name] cfgs = {m: _model_pretrained_cfgs[m] for m in model_names} return cfgs