Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc +0 -0
- pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc +0 -0
- pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc +0 -0
- pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc +0 -0
- pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc +0 -0
- pytorch-image-models/timm/data/readers/reader_image_in_tar.py +229 -0
- pytorch-image-models/timm/data/readers/reader_tfds.py +355 -0
- pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc +0 -0
- pytorch-image-models/timm/layers/adaptive_avgmax_pool.py +183 -0
- pytorch-image-models/timm/layers/attention_pool.py +105 -0
- pytorch-image-models/timm/layers/attention_pool2d.py +278 -0
- pytorch-image-models/timm/layers/blur_pool.py +91 -0
- pytorch-image-models/timm/layers/bottleneck_attn.py +157 -0
- pytorch-image-models/timm/layers/cbam.py +112 -0
- pytorch-image-models/timm/layers/classifier.py +283 -0
- pytorch-image-models/timm/layers/cond_conv2d.py +123 -0
- pytorch-image-models/timm/layers/config.py +149 -0
- pytorch-image-models/timm/layers/conv2d_same.py +110 -0
- pytorch-image-models/timm/layers/conv_bn_act.py +92 -0
- pytorch-image-models/timm/layers/create_act.py +138 -0
- pytorch-image-models/timm/layers/create_attn.py +89 -0
- pytorch-image-models/timm/layers/create_conv2d.py +36 -0
- pytorch-image-models/timm/layers/evo_norm.py +352 -0
- pytorch-image-models/timm/layers/fast_norm.py +150 -0
- pytorch-image-models/timm/layers/filter_response_norm.py +68 -0
- pytorch-image-models/timm/layers/format.py +58 -0
- pytorch-image-models/timm/layers/gather_excite.py +90 -0
- pytorch-image-models/timm/layers/global_context.py +67 -0
- pytorch-image-models/timm/layers/halo_attn.py +233 -0
- pytorch-image-models/timm/layers/hybrid_embed.py +253 -0
- pytorch-image-models/timm/layers/inplace_abn.py +87 -0
- pytorch-image-models/timm/layers/lambda_layer.py +134 -0
pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (1.2 kB). View file
|
|
pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc
ADDED
Binary file (611 Bytes). View file
|
|
pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc
ADDED
Binary file (12.5 kB). View file
|
|
pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc
ADDED
Binary file (1.88 kB). View file
|
|
pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc
ADDED
Binary file (1.11 kB). View file
|
|
pytorch-image-models/timm/data/readers/reader_image_in_tar.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" A dataset reader that reads tarfile based datasets
|
2 |
+
|
3 |
+
This reader can extract image samples from:
|
4 |
+
* a single tar of image files
|
5 |
+
* a folder of multiple tarfiles containing imagefiles
|
6 |
+
* a tar of tars containing image files
|
7 |
+
|
8 |
+
Labels are based on the combined folder and/or tar name structure.
|
9 |
+
|
10 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
11 |
+
"""
|
12 |
+
import logging
|
13 |
+
import os
|
14 |
+
import pickle
|
15 |
+
import tarfile
|
16 |
+
from glob import glob
|
17 |
+
from typing import List, Tuple, Dict, Set, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from timm.utils.misc import natural_key
|
22 |
+
|
23 |
+
from .class_map import load_class_map
|
24 |
+
from .img_extensions import get_img_extensions
|
25 |
+
from .reader import Reader
|
26 |
+
|
27 |
+
_logger = logging.getLogger(__name__)
|
28 |
+
CACHE_FILENAME_SUFFIX = '_tarinfos.pickle'
|
29 |
+
|
30 |
+
|
31 |
+
class TarState:
|
32 |
+
|
33 |
+
def __init__(self, tf: tarfile.TarFile = None, ti: tarfile.TarInfo = None):
|
34 |
+
self.tf: tarfile.TarFile = tf
|
35 |
+
self.ti: tarfile.TarInfo = ti
|
36 |
+
self.children: Dict[str, TarState] = {} # child states (tars within tars)
|
37 |
+
|
38 |
+
def reset(self):
|
39 |
+
self.tf = None
|
40 |
+
|
41 |
+
|
42 |
+
def _extract_tarinfo(tf: tarfile.TarFile, parent_info: Dict, extensions: Set[str]):
|
43 |
+
sample_count = 0
|
44 |
+
for i, ti in enumerate(tf):
|
45 |
+
if not ti.isfile():
|
46 |
+
continue
|
47 |
+
dirname, basename = os.path.split(ti.path)
|
48 |
+
name, ext = os.path.splitext(basename)
|
49 |
+
ext = ext.lower()
|
50 |
+
if ext == '.tar':
|
51 |
+
with tarfile.open(fileobj=tf.extractfile(ti), mode='r|') as ctf:
|
52 |
+
child_info = dict(
|
53 |
+
name=ti.name, path=os.path.join(parent_info['path'], name), ti=ti, children=[], samples=[])
|
54 |
+
sample_count += _extract_tarinfo(ctf, child_info, extensions=extensions)
|
55 |
+
_logger.debug(f'{i}/?. Extracted child tarinfos from {ti.name}. {len(child_info["samples"])} images.')
|
56 |
+
parent_info['children'].append(child_info)
|
57 |
+
elif ext in extensions:
|
58 |
+
parent_info['samples'].append(ti)
|
59 |
+
sample_count += 1
|
60 |
+
return sample_count
|
61 |
+
|
62 |
+
|
63 |
+
def extract_tarinfos(
|
64 |
+
root,
|
65 |
+
class_name_to_idx: Optional[Dict] = None,
|
66 |
+
cache_tarinfo: Optional[bool] = None,
|
67 |
+
extensions: Optional[Union[List, Tuple, Set]] = None,
|
68 |
+
sort: bool = True
|
69 |
+
):
|
70 |
+
extensions = get_img_extensions(as_set=True) if not extensions else set(extensions)
|
71 |
+
root_is_tar = False
|
72 |
+
if os.path.isfile(root):
|
73 |
+
assert os.path.splitext(root)[-1].lower() == '.tar'
|
74 |
+
tar_filenames = [root]
|
75 |
+
root, root_name = os.path.split(root)
|
76 |
+
root_name = os.path.splitext(root_name)[0]
|
77 |
+
root_is_tar = True
|
78 |
+
else:
|
79 |
+
root_name = root.strip(os.path.sep).split(os.path.sep)[-1]
|
80 |
+
tar_filenames = glob(os.path.join(root, '*.tar'), recursive=True)
|
81 |
+
num_tars = len(tar_filenames)
|
82 |
+
tar_bytes = sum([os.path.getsize(f) for f in tar_filenames])
|
83 |
+
assert num_tars, f'No .tar files found at specified path ({root}).'
|
84 |
+
|
85 |
+
_logger.info(f'Scanning {tar_bytes/1024**2:.2f}MB of tar files...')
|
86 |
+
info = dict(tartrees=[])
|
87 |
+
cache_path = ''
|
88 |
+
if cache_tarinfo is None:
|
89 |
+
cache_tarinfo = True if tar_bytes > 10*1024**3 else False # FIXME magic number, 10GB
|
90 |
+
if cache_tarinfo:
|
91 |
+
cache_filename = '_' + root_name + CACHE_FILENAME_SUFFIX
|
92 |
+
cache_path = os.path.join(root, cache_filename)
|
93 |
+
if os.path.exists(cache_path):
|
94 |
+
_logger.info(f'Reading tar info from cache file {cache_path}.')
|
95 |
+
with open(cache_path, 'rb') as pf:
|
96 |
+
info = pickle.load(pf)
|
97 |
+
assert len(info['tartrees']) == num_tars, "Cached tartree len doesn't match number of tarfiles"
|
98 |
+
else:
|
99 |
+
for i, fn in enumerate(tar_filenames):
|
100 |
+
path = '' if root_is_tar else os.path.splitext(os.path.basename(fn))[0]
|
101 |
+
with tarfile.open(fn, mode='r|') as tf: # tarinfo scans done in streaming mode
|
102 |
+
parent_info = dict(name=os.path.relpath(fn, root), path=path, ti=None, children=[], samples=[])
|
103 |
+
num_samples = _extract_tarinfo(tf, parent_info, extensions=extensions)
|
104 |
+
num_children = len(parent_info["children"])
|
105 |
+
_logger.debug(
|
106 |
+
f'{i}/{num_tars}. Extracted tarinfos from {fn}. {num_children} children, {num_samples} samples.')
|
107 |
+
info['tartrees'].append(parent_info)
|
108 |
+
if cache_path:
|
109 |
+
_logger.info(f'Writing tar info to cache file {cache_path}.')
|
110 |
+
with open(cache_path, 'wb') as pf:
|
111 |
+
pickle.dump(info, pf)
|
112 |
+
|
113 |
+
samples = []
|
114 |
+
labels = []
|
115 |
+
build_class_map = False
|
116 |
+
if class_name_to_idx is None:
|
117 |
+
build_class_map = True
|
118 |
+
|
119 |
+
# Flatten tartree info into lists of samples and targets w/ targets based on label id via
|
120 |
+
# class map arg or from unique paths.
|
121 |
+
# NOTE: currently only flattening up to two-levels, filesystem .tars and then one level of sub-tar children
|
122 |
+
# this covers my current use cases and keeps things a little easier to test for now.
|
123 |
+
tarfiles = []
|
124 |
+
|
125 |
+
def _label_from_paths(*path, leaf_only=True):
|
126 |
+
path = os.path.join(*path).strip(os.path.sep)
|
127 |
+
return path.split(os.path.sep)[-1] if leaf_only else path.replace(os.path.sep, '_')
|
128 |
+
|
129 |
+
def _add_samples(info, fn):
|
130 |
+
added = 0
|
131 |
+
for s in info['samples']:
|
132 |
+
label = _label_from_paths(info['path'], os.path.dirname(s.path))
|
133 |
+
if not build_class_map and label not in class_name_to_idx:
|
134 |
+
continue
|
135 |
+
samples.append((s, fn, info['ti']))
|
136 |
+
labels.append(label)
|
137 |
+
added += 1
|
138 |
+
return added
|
139 |
+
|
140 |
+
_logger.info(f'Collecting samples and building tar states.')
|
141 |
+
for parent_info in info['tartrees']:
|
142 |
+
# if tartree has children, we assume all samples are at the child level
|
143 |
+
tar_name = None if root_is_tar else parent_info['name']
|
144 |
+
tar_state = TarState()
|
145 |
+
parent_added = 0
|
146 |
+
for child_info in parent_info['children']:
|
147 |
+
child_added = _add_samples(child_info, fn=tar_name)
|
148 |
+
if child_added:
|
149 |
+
tar_state.children[child_info['name']] = TarState(ti=child_info['ti'])
|
150 |
+
parent_added += child_added
|
151 |
+
parent_added += _add_samples(parent_info, fn=tar_name)
|
152 |
+
if parent_added:
|
153 |
+
tarfiles.append((tar_name, tar_state))
|
154 |
+
del info
|
155 |
+
|
156 |
+
if build_class_map:
|
157 |
+
# build class index
|
158 |
+
sorted_labels = list(sorted(set(labels), key=natural_key))
|
159 |
+
class_name_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
|
160 |
+
|
161 |
+
_logger.info(f'Mapping targets and sorting samples.')
|
162 |
+
samples_and_targets = [(s, class_name_to_idx[l]) for s, l in zip(samples, labels) if l in class_name_to_idx]
|
163 |
+
if sort:
|
164 |
+
samples_and_targets = sorted(samples_and_targets, key=lambda k: natural_key(k[0][0].path))
|
165 |
+
samples, targets = zip(*samples_and_targets)
|
166 |
+
samples = np.array(samples)
|
167 |
+
targets = np.array(targets)
|
168 |
+
_logger.info(f'Finished processing {len(samples)} samples across {len(tarfiles)} tar files.')
|
169 |
+
return samples, targets, class_name_to_idx, tarfiles
|
170 |
+
|
171 |
+
|
172 |
+
class ReaderImageInTar(Reader):
|
173 |
+
""" Multi-tarfile dataset reader where there is one .tar file per class
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, root, class_map='', cache_tarfiles=True, cache_tarinfo=None):
|
177 |
+
super().__init__()
|
178 |
+
|
179 |
+
class_name_to_idx = None
|
180 |
+
if class_map:
|
181 |
+
class_name_to_idx = load_class_map(class_map, root)
|
182 |
+
self.root = root
|
183 |
+
self.samples, self.targets, self.class_name_to_idx, tarfiles = extract_tarinfos(
|
184 |
+
self.root,
|
185 |
+
class_name_to_idx=class_name_to_idx,
|
186 |
+
cache_tarinfo=cache_tarinfo
|
187 |
+
)
|
188 |
+
self.class_idx_to_name = {v: k for k, v in self.class_name_to_idx.items()}
|
189 |
+
if len(tarfiles) == 1 and tarfiles[0][0] is None:
|
190 |
+
self.root_is_tar = True
|
191 |
+
self.tar_state = tarfiles[0][1]
|
192 |
+
else:
|
193 |
+
self.root_is_tar = False
|
194 |
+
self.tar_state = dict(tarfiles)
|
195 |
+
self.cache_tarfiles = cache_tarfiles
|
196 |
+
|
197 |
+
def __len__(self):
|
198 |
+
return len(self.samples)
|
199 |
+
|
200 |
+
def __getitem__(self, index):
|
201 |
+
sample = self.samples[index]
|
202 |
+
target = self.targets[index]
|
203 |
+
sample_ti, parent_fn, child_ti = sample
|
204 |
+
parent_abs = os.path.join(self.root, parent_fn) if parent_fn else self.root
|
205 |
+
|
206 |
+
tf = None
|
207 |
+
cache_state = None
|
208 |
+
if self.cache_tarfiles:
|
209 |
+
cache_state = self.tar_state if self.root_is_tar else self.tar_state[parent_fn]
|
210 |
+
tf = cache_state.tf
|
211 |
+
if tf is None:
|
212 |
+
tf = tarfile.open(parent_abs)
|
213 |
+
if self.cache_tarfiles:
|
214 |
+
cache_state.tf = tf
|
215 |
+
if child_ti is not None:
|
216 |
+
ctf = cache_state.children[child_ti.name].tf if self.cache_tarfiles else None
|
217 |
+
if ctf is None:
|
218 |
+
ctf = tarfile.open(fileobj=tf.extractfile(child_ti))
|
219 |
+
if self.cache_tarfiles:
|
220 |
+
cache_state.children[child_ti.name].tf = ctf
|
221 |
+
tf = ctf
|
222 |
+
|
223 |
+
return tf.extractfile(sample_ti), target
|
224 |
+
|
225 |
+
def _filename(self, index, basename=False, absolute=False):
|
226 |
+
filename = self.samples[index][0].name
|
227 |
+
if basename:
|
228 |
+
filename = os.path.basename(filename)
|
229 |
+
return filename
|
pytorch-image-models/timm/data/readers/reader_tfds.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Dataset reader that wraps TFDS datasets
|
2 |
+
|
3 |
+
Wraps many (most?) TFDS image-classification datasets
|
4 |
+
from https://github.com/tensorflow/datasets
|
5 |
+
https://www.tensorflow.org/datasets/catalog/overview#image_classification
|
6 |
+
|
7 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
8 |
+
"""
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.distributed as dist
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
try:
|
19 |
+
import tensorflow as tf
|
20 |
+
tf.config.set_visible_devices([], 'GPU') # Hands off my GPU! (or pip install tensorflow-cpu)
|
21 |
+
import tensorflow_datasets as tfds
|
22 |
+
try:
|
23 |
+
tfds.even_splits('', 1, drop_remainder=False) # non-buggy even_splits has drop_remainder arg
|
24 |
+
has_buggy_even_splits = False
|
25 |
+
except TypeError:
|
26 |
+
print("Warning: This version of tfds doesn't have the latest even_splits impl. "
|
27 |
+
"Please update or use tfds-nightly for better fine-grained split behaviour.")
|
28 |
+
has_buggy_even_splits = True
|
29 |
+
# NOTE uncomment below if having file limit issues on dataset build (or alter your OS defaults)
|
30 |
+
# import resource
|
31 |
+
# low, high = resource.getrlimit(resource.RLIMIT_NOFILE)
|
32 |
+
# resource.setrlimit(resource.RLIMIT_NOFILE, (high, high))
|
33 |
+
except ImportError as e:
|
34 |
+
print(e)
|
35 |
+
print("Please install tensorflow_datasets package `pip install tensorflow-datasets`.")
|
36 |
+
raise e
|
37 |
+
|
38 |
+
from .class_map import load_class_map
|
39 |
+
from .reader import Reader
|
40 |
+
from .shared_count import SharedCount
|
41 |
+
|
42 |
+
|
43 |
+
MAX_TP_SIZE = int(os.environ.get('TFDS_TP_SIZE', 8)) # maximum TF threadpool size, for jpeg decodes and queuing activities
|
44 |
+
SHUFFLE_SIZE = int(os.environ.get('TFDS_SHUFFLE_SIZE', 8192)) # samples to shuffle in DS queue
|
45 |
+
PREFETCH_SIZE = int(os.environ.get('TFDS_PREFETCH_SIZE', 2048)) # samples to prefetch
|
46 |
+
|
47 |
+
|
48 |
+
@tfds.decode.make_decoder()
|
49 |
+
def decode_example(serialized_image, feature, dct_method='INTEGER_ACCURATE', channels=3):
|
50 |
+
return tf.image.decode_jpeg(
|
51 |
+
serialized_image,
|
52 |
+
channels=channels,
|
53 |
+
dct_method=dct_method,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
def even_split_indices(split, n, num_samples):
|
58 |
+
partitions = [round(i * num_samples / n) for i in range(n + 1)]
|
59 |
+
return [f"{split}[{partitions[i]}:{partitions[i + 1]}]" for i in range(n)]
|
60 |
+
|
61 |
+
|
62 |
+
def get_class_labels(info):
|
63 |
+
if 'label' not in info.features:
|
64 |
+
return {}
|
65 |
+
class_label = info.features['label']
|
66 |
+
class_to_idx = {n: class_label.str2int(n) for n in class_label.names}
|
67 |
+
return class_to_idx
|
68 |
+
|
69 |
+
|
70 |
+
class ReaderTfds(Reader):
|
71 |
+
""" Wrap Tensorflow Datasets for use in PyTorch
|
72 |
+
|
73 |
+
There several things to be aware of:
|
74 |
+
* To prevent excessive samples being dropped per epoch w/ distributed training or multiplicity of
|
75 |
+
dataloader workers, the train iterator wraps to avoid returning partial batches that trigger drop_last
|
76 |
+
https://github.com/pytorch/pytorch/issues/33413
|
77 |
+
* With PyTorch IterableDatasets, each worker in each replica operates in isolation, the final batch
|
78 |
+
from each worker could be a different size. For training this is worked around by option above, for
|
79 |
+
validation extra samples are inserted iff distributed mode is enabled so that the batches being reduced
|
80 |
+
across replicas are of same size. This will slightly alter the results, distributed validation will not be
|
81 |
+
100% correct. This is similar to common handling in DistributedSampler for normal Datasets but a bit worse
|
82 |
+
since there are up to N * J extra samples with IterableDatasets.
|
83 |
+
* The sharding (splitting of dataset into TFRecord) files imposes limitations on the number of
|
84 |
+
replicas and dataloader workers you can use. For really small datasets that only contain a few shards
|
85 |
+
you may have to train non-distributed w/ 1-2 dataloader workers. This is likely not a huge concern as the
|
86 |
+
benefit of distributed training or fast dataloading should be much less for small datasets.
|
87 |
+
* This wrapper is currently configured to return individual, decompressed image samples from the TFDS
|
88 |
+
dataset. The augmentation (transforms) and batching is still done in PyTorch. It would be possible
|
89 |
+
to specify TF augmentation fn and return augmented batches w/ some modifications to other downstream
|
90 |
+
components.
|
91 |
+
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
name,
|
97 |
+
root=None,
|
98 |
+
split='train',
|
99 |
+
class_map=None,
|
100 |
+
is_training=False,
|
101 |
+
batch_size=1,
|
102 |
+
download=False,
|
103 |
+
repeats=0,
|
104 |
+
seed=42,
|
105 |
+
input_key='image',
|
106 |
+
input_img_mode='RGB',
|
107 |
+
target_key='label',
|
108 |
+
target_img_mode='',
|
109 |
+
prefetch_size=None,
|
110 |
+
shuffle_size=None,
|
111 |
+
max_threadpool_size=None
|
112 |
+
):
|
113 |
+
""" Tensorflow-datasets Wrapper
|
114 |
+
|
115 |
+
Args:
|
116 |
+
root: root data dir (ie your TFDS_DATA_DIR. not dataset specific sub-dir)
|
117 |
+
name: tfds dataset name (eg `imagenet2012`)
|
118 |
+
split: tfds dataset split (can use all TFDS split strings eg `train[:10%]`)
|
119 |
+
is_training: training mode, shuffle enabled, dataset len rounded by batch_size
|
120 |
+
batch_size: batch_size to use to unsure total samples % batch_size == 0 in training across all dis nodes
|
121 |
+
download: download and build TFDS dataset if set, otherwise must use tfds CLI
|
122 |
+
repeats: iterate through (repeat) the dataset this many times per iteration (once if 0 or 1)
|
123 |
+
seed: common seed for shard shuffle across all distributed/worker instances
|
124 |
+
input_key: name of Feature to return as data (input)
|
125 |
+
input_img_mode: image mode if input is an image (currently PIL mode string)
|
126 |
+
target_key: name of Feature to return as target (label)
|
127 |
+
target_img_mode: image mode if target is an image (currently PIL mode string)
|
128 |
+
prefetch_size: override default tf.data prefetch buffer size
|
129 |
+
shuffle_size: override default tf.data shuffle buffer size
|
130 |
+
max_threadpool_size: override default threadpool size for tf.data
|
131 |
+
"""
|
132 |
+
super().__init__()
|
133 |
+
self.root = root
|
134 |
+
self.split = split
|
135 |
+
self.is_training = is_training
|
136 |
+
self.batch_size = batch_size
|
137 |
+
self.repeats = repeats
|
138 |
+
self.common_seed = seed # a seed that's fixed across all worker / distributed instances
|
139 |
+
|
140 |
+
# performance settings
|
141 |
+
self.prefetch_size = prefetch_size or PREFETCH_SIZE
|
142 |
+
self.shuffle_size = shuffle_size or SHUFFLE_SIZE
|
143 |
+
self.max_threadpool_size = max_threadpool_size or MAX_TP_SIZE
|
144 |
+
|
145 |
+
# TFDS builder and split information
|
146 |
+
self.input_key = input_key # FIXME support tuples / lists of inputs and targets and full range of Feature
|
147 |
+
self.input_img_mode = input_img_mode
|
148 |
+
self.target_key = target_key
|
149 |
+
self.target_img_mode = target_img_mode # for dense pixel targets
|
150 |
+
self.builder = tfds.builder(name, data_dir=root)
|
151 |
+
# NOTE: the tfds command line app can be used download & prepare datasets if you don't enable download flag
|
152 |
+
if download:
|
153 |
+
self.builder.download_and_prepare()
|
154 |
+
self.remap_class = False
|
155 |
+
if class_map:
|
156 |
+
self.class_to_idx = load_class_map(class_map)
|
157 |
+
self.remap_class = True
|
158 |
+
else:
|
159 |
+
self.class_to_idx = get_class_labels(self.builder.info) if self.target_key == 'label' else {}
|
160 |
+
self.split_info = self.builder.info.splits[split]
|
161 |
+
self.num_samples = self.split_info.num_examples
|
162 |
+
|
163 |
+
# Distributed world state
|
164 |
+
self.dist_rank = 0
|
165 |
+
self.dist_num_replicas = 1
|
166 |
+
if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1:
|
167 |
+
self.dist_rank = dist.get_rank()
|
168 |
+
self.dist_num_replicas = dist.get_world_size()
|
169 |
+
|
170 |
+
# Attributes that are updated in _lazy_init, including the tf.data pipeline itself
|
171 |
+
self.global_num_workers = 1
|
172 |
+
self.num_workers = 1
|
173 |
+
self.worker_info = None
|
174 |
+
self.worker_seed = 0 # seed unique to each work instance
|
175 |
+
self.subsplit = None # set when data is distributed across workers using sub-splits
|
176 |
+
self.ds = None # initialized lazily on each dataloader worker process
|
177 |
+
self.init_count = 0 # number of ds TF data pipeline initializations
|
178 |
+
self.epoch_count = SharedCount()
|
179 |
+
# FIXME need to determine if reinit_each_iter is necessary. I'm don't completely trust behaviour
|
180 |
+
# of `shuffle_reshuffle_each_iteration` when there are multiple workers / nodes across epochs
|
181 |
+
self.reinit_each_iter = self.is_training
|
182 |
+
|
183 |
+
def set_epoch(self, count):
|
184 |
+
self.epoch_count.value = count
|
185 |
+
|
186 |
+
def set_loader_cfg(
|
187 |
+
self,
|
188 |
+
num_workers: Optional[int] = None,
|
189 |
+
):
|
190 |
+
if self.ds is not None:
|
191 |
+
return
|
192 |
+
if num_workers is not None:
|
193 |
+
self.num_workers = num_workers
|
194 |
+
self.global_num_workers = self.dist_num_replicas * self.num_workers
|
195 |
+
|
196 |
+
def _lazy_init(self):
|
197 |
+
""" Lazily initialize the dataset.
|
198 |
+
|
199 |
+
This is necessary to init the Tensorflow dataset pipeline in the (dataloader) process that
|
200 |
+
will be using the dataset instance. The __init__ method is called on the main process,
|
201 |
+
this will be called in a dataloader worker process.
|
202 |
+
|
203 |
+
NOTE: There will be problems if you try to re-use this dataset across different loader/worker
|
204 |
+
instances once it has been initialized. Do not call any dataset methods that can call _lazy_init
|
205 |
+
before it is passed to dataloader.
|
206 |
+
"""
|
207 |
+
worker_info = torch.utils.data.get_worker_info()
|
208 |
+
|
209 |
+
# setup input context to split dataset across distributed processes
|
210 |
+
num_workers = 1
|
211 |
+
global_worker_id = 0
|
212 |
+
if worker_info is not None:
|
213 |
+
self.worker_info = worker_info
|
214 |
+
self.worker_seed = worker_info.seed
|
215 |
+
self.num_workers = worker_info.num_workers
|
216 |
+
self.global_num_workers = self.dist_num_replicas * self.num_workers
|
217 |
+
global_worker_id = self.dist_rank * self.num_workers + worker_info.id
|
218 |
+
|
219 |
+
""" Data sharding
|
220 |
+
InputContext will assign subset of underlying TFRecord files to each 'pipeline' if used.
|
221 |
+
My understanding is that using split, the underling TFRecord files will shuffle (shuffle_files=True)
|
222 |
+
between the splits each iteration, but that understanding could be wrong.
|
223 |
+
|
224 |
+
I am currently using a mix of InputContext shard assignment and fine-grained sub-splits for distributing
|
225 |
+
the data across workers. For training InputContext is used to assign shards to nodes unless num_shards
|
226 |
+
in dataset < total number of workers. Otherwise sub-split API is used for datasets without enough shards or
|
227 |
+
for validation where we can't drop samples and need to avoid minimize uneven splits to avoid padding.
|
228 |
+
"""
|
229 |
+
should_subsplit = self.global_num_workers > 1 and (
|
230 |
+
self.split_info.num_shards < self.global_num_workers or not self.is_training)
|
231 |
+
if should_subsplit:
|
232 |
+
# split the dataset w/o using sharding for more even samples / worker, can result in less optimal
|
233 |
+
# read patterns for distributed training (overlap across shards) so better to use InputContext there
|
234 |
+
if has_buggy_even_splits:
|
235 |
+
# my even_split workaround doesn't work on subsplits, upgrade tfds!
|
236 |
+
if not isinstance(self.split_info, tfds.core.splits.SubSplitInfo):
|
237 |
+
subsplits = even_split_indices(self.split, self.global_num_workers, self.num_samples)
|
238 |
+
self.subsplit = subsplits[global_worker_id]
|
239 |
+
else:
|
240 |
+
subsplits = tfds.even_splits(self.split, self.global_num_workers)
|
241 |
+
self.subsplit = subsplits[global_worker_id]
|
242 |
+
|
243 |
+
input_context = None
|
244 |
+
if self.global_num_workers > 1 and self.subsplit is None:
|
245 |
+
# set input context to divide shards among distributed replicas
|
246 |
+
input_context = tf.distribute.InputContext(
|
247 |
+
num_input_pipelines=self.global_num_workers,
|
248 |
+
input_pipeline_id=global_worker_id,
|
249 |
+
num_replicas_in_sync=self.dist_num_replicas # FIXME does this arg have any impact?
|
250 |
+
)
|
251 |
+
read_config = tfds.ReadConfig(
|
252 |
+
shuffle_seed=self.common_seed + self.epoch_count.value,
|
253 |
+
shuffle_reshuffle_each_iteration=True,
|
254 |
+
input_context=input_context,
|
255 |
+
)
|
256 |
+
ds = self.builder.as_dataset(
|
257 |
+
split=self.subsplit or self.split,
|
258 |
+
shuffle_files=self.is_training,
|
259 |
+
decoders=dict(image=decode_example(channels=1 if self.input_img_mode == 'L' else 3)),
|
260 |
+
read_config=read_config,
|
261 |
+
)
|
262 |
+
# avoid overloading threading w/ combo of TF ds threads + PyTorch workers
|
263 |
+
options = tf.data.Options()
|
264 |
+
thread_member = 'threading' if hasattr(options, 'threading') else 'experimental_threading'
|
265 |
+
getattr(options, thread_member).private_threadpool_size = max(1, self.max_threadpool_size // self.num_workers)
|
266 |
+
getattr(options, thread_member).max_intra_op_parallelism = 1
|
267 |
+
ds = ds.with_options(options)
|
268 |
+
if self.is_training or self.repeats > 1:
|
269 |
+
# to prevent excessive drop_last batch behaviour w/ IterableDatasets
|
270 |
+
# see warnings at https://pytorch.org/docs/stable/data.html#multi-process-data-loading
|
271 |
+
ds = ds.repeat() # allow wrap around and break iteration manually
|
272 |
+
if self.is_training:
|
273 |
+
ds = ds.shuffle(min(self.num_samples, self.shuffle_size) // self.global_num_workers, seed=self.worker_seed)
|
274 |
+
ds = ds.prefetch(min(self.num_samples // self.global_num_workers, self.prefetch_size))
|
275 |
+
self.ds = tfds.as_numpy(ds)
|
276 |
+
self.init_count += 1
|
277 |
+
|
278 |
+
def _num_samples_per_worker(self):
|
279 |
+
num_worker_samples = \
|
280 |
+
max(1, self.repeats) * self.num_samples / max(self.global_num_workers, self.dist_num_replicas)
|
281 |
+
if self.is_training or self.dist_num_replicas > 1:
|
282 |
+
num_worker_samples = math.ceil(num_worker_samples)
|
283 |
+
if self.is_training:
|
284 |
+
num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size
|
285 |
+
return int(num_worker_samples)
|
286 |
+
|
287 |
+
def __iter__(self):
|
288 |
+
if self.ds is None or self.reinit_each_iter:
|
289 |
+
self._lazy_init()
|
290 |
+
|
291 |
+
# Compute a rounded up sample count that is used to:
|
292 |
+
# 1. make batches even cross workers & replicas in distributed validation.
|
293 |
+
# This adds extra samples and will slightly alter validation results.
|
294 |
+
# 2. determine loop ending condition in training w/ repeat enabled so that only full batch_size
|
295 |
+
# batches are produced (underlying tfds iter wraps around)
|
296 |
+
target_sample_count = self._num_samples_per_worker()
|
297 |
+
|
298 |
+
# Iterate until exhausted or sample count hits target when training (ds.repeat enabled)
|
299 |
+
sample_count = 0
|
300 |
+
for sample in self.ds:
|
301 |
+
input_data = sample[self.input_key]
|
302 |
+
if self.input_img_mode:
|
303 |
+
if self.input_img_mode == 'L' and input_data.ndim == 3:
|
304 |
+
input_data = input_data[:, :, 0]
|
305 |
+
input_data = Image.fromarray(input_data, mode=self.input_img_mode)
|
306 |
+
target_data = sample[self.target_key]
|
307 |
+
if self.target_img_mode:
|
308 |
+
# dense pixel target
|
309 |
+
target_data = Image.fromarray(target_data, mode=self.target_img_mode)
|
310 |
+
elif self.remap_class:
|
311 |
+
target_data = self.class_to_idx[target_data]
|
312 |
+
yield input_data, target_data
|
313 |
+
sample_count += 1
|
314 |
+
if self.is_training and sample_count >= target_sample_count:
|
315 |
+
# Need to break out of loop when repeat() is enabled for training w/ oversampling
|
316 |
+
# this results in extra samples per epoch but seems more desirable than dropping
|
317 |
+
# up to N*J batches per epoch (where N = num distributed processes, and J = num worker processes)
|
318 |
+
break
|
319 |
+
|
320 |
+
# Pad across distributed nodes (make counts equal by adding samples)
|
321 |
+
if not self.is_training and self.dist_num_replicas > 1 and self.subsplit is not None and \
|
322 |
+
0 < sample_count < target_sample_count:
|
323 |
+
# Validation batch padding only done for distributed training where results are reduced across nodes.
|
324 |
+
# For single process case, it won't matter if workers return different batch sizes.
|
325 |
+
# If using input_context or % based splits, sample count can vary significantly across workers and this
|
326 |
+
# approach should not be used (hence disabled if self.subsplit isn't set).
|
327 |
+
while sample_count < target_sample_count:
|
328 |
+
yield input_data, target_data # yield prev sample again
|
329 |
+
sample_count += 1
|
330 |
+
|
331 |
+
def __len__(self):
|
332 |
+
num_samples = self._num_samples_per_worker() * self.num_workers
|
333 |
+
return num_samples
|
334 |
+
|
335 |
+
def _filename(self, index, basename=False, absolute=False):
|
336 |
+
assert False, "Not supported" # no random access to samples
|
337 |
+
|
338 |
+
def filenames(self, basename=False, absolute=False):
|
339 |
+
""" Return all filenames in dataset, overrides base"""
|
340 |
+
if self.ds is None:
|
341 |
+
self._lazy_init()
|
342 |
+
names = []
|
343 |
+
for sample in self.ds:
|
344 |
+
if len(names) > self.num_samples:
|
345 |
+
break # safety for ds.repeat() case
|
346 |
+
if 'file_name' in sample:
|
347 |
+
name = sample['file_name']
|
348 |
+
elif 'filename' in sample:
|
349 |
+
name = sample['filename']
|
350 |
+
elif 'id' in sample:
|
351 |
+
name = sample['id']
|
352 |
+
else:
|
353 |
+
assert False, "No supported name field present"
|
354 |
+
names.append(name)
|
355 |
+
return names
|
pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (5.75 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc
ADDED
Binary file (7.78 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc
ADDED
Binary file (7.24 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc
ADDED
Binary file (9.45 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc
ADDED
Binary file (3.02 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc
ADDED
Binary file (6.32 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc
ADDED
Binary file (3.77 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc
ADDED
Binary file (1.48 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc
ADDED
Binary file (1.66 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc
ADDED
Binary file (1.24 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc
ADDED
Binary file (7.07 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc
ADDED
Binary file (1.04 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc
ADDED
Binary file (6.93 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc
ADDED
Binary file (8.33 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc
ADDED
Binary file (2.07 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc
ADDED
Binary file (12.9 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc
ADDED
Binary file (2.97 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc
ADDED
Binary file (5.76 kB). View file
|
|
pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc
ADDED
Binary file (2.06 kB). View file
|
|
pytorch-image-models/timm/layers/adaptive_avgmax_pool.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch selectable adaptive pooling
|
2 |
+
Adaptive pooling with the ability to select the type of pooling from:
|
3 |
+
* 'avg' - Average pooling
|
4 |
+
* 'max' - Max pooling
|
5 |
+
* 'avgmax' - Sum of average and max pooling re-scaled by 0.5
|
6 |
+
* 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim
|
7 |
+
|
8 |
+
Both a functional and a nn.Module version of the pooling is provided.
|
9 |
+
|
10 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
11 |
+
"""
|
12 |
+
from typing import Optional, Tuple, Union
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
from .format import get_spatial_dim, get_channel_dim
|
19 |
+
|
20 |
+
_int_tuple_2_t = Union[int, Tuple[int, int]]
|
21 |
+
|
22 |
+
|
23 |
+
def adaptive_pool_feat_mult(pool_type='avg'):
|
24 |
+
if pool_type.endswith('catavgmax'):
|
25 |
+
return 2
|
26 |
+
else:
|
27 |
+
return 1
|
28 |
+
|
29 |
+
|
30 |
+
def adaptive_avgmax_pool2d(x, output_size: _int_tuple_2_t = 1):
|
31 |
+
x_avg = F.adaptive_avg_pool2d(x, output_size)
|
32 |
+
x_max = F.adaptive_max_pool2d(x, output_size)
|
33 |
+
return 0.5 * (x_avg + x_max)
|
34 |
+
|
35 |
+
|
36 |
+
def adaptive_catavgmax_pool2d(x, output_size: _int_tuple_2_t = 1):
|
37 |
+
x_avg = F.adaptive_avg_pool2d(x, output_size)
|
38 |
+
x_max = F.adaptive_max_pool2d(x, output_size)
|
39 |
+
return torch.cat((x_avg, x_max), 1)
|
40 |
+
|
41 |
+
|
42 |
+
def select_adaptive_pool2d(x, pool_type='avg', output_size: _int_tuple_2_t = 1):
|
43 |
+
"""Selectable global pooling function with dynamic input kernel size
|
44 |
+
"""
|
45 |
+
if pool_type == 'avg':
|
46 |
+
x = F.adaptive_avg_pool2d(x, output_size)
|
47 |
+
elif pool_type == 'avgmax':
|
48 |
+
x = adaptive_avgmax_pool2d(x, output_size)
|
49 |
+
elif pool_type == 'catavgmax':
|
50 |
+
x = adaptive_catavgmax_pool2d(x, output_size)
|
51 |
+
elif pool_type == 'max':
|
52 |
+
x = F.adaptive_max_pool2d(x, output_size)
|
53 |
+
else:
|
54 |
+
assert False, 'Invalid pool type: %s' % pool_type
|
55 |
+
return x
|
56 |
+
|
57 |
+
|
58 |
+
class FastAdaptiveAvgPool(nn.Module):
|
59 |
+
def __init__(self, flatten: bool = False, input_fmt: F = 'NCHW'):
|
60 |
+
super(FastAdaptiveAvgPool, self).__init__()
|
61 |
+
self.flatten = flatten
|
62 |
+
self.dim = get_spatial_dim(input_fmt)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
return x.mean(self.dim, keepdim=not self.flatten)
|
66 |
+
|
67 |
+
|
68 |
+
class FastAdaptiveMaxPool(nn.Module):
|
69 |
+
def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'):
|
70 |
+
super(FastAdaptiveMaxPool, self).__init__()
|
71 |
+
self.flatten = flatten
|
72 |
+
self.dim = get_spatial_dim(input_fmt)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
return x.amax(self.dim, keepdim=not self.flatten)
|
76 |
+
|
77 |
+
|
78 |
+
class FastAdaptiveAvgMaxPool(nn.Module):
|
79 |
+
def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'):
|
80 |
+
super(FastAdaptiveAvgMaxPool, self).__init__()
|
81 |
+
self.flatten = flatten
|
82 |
+
self.dim = get_spatial_dim(input_fmt)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
x_avg = x.mean(self.dim, keepdim=not self.flatten)
|
86 |
+
x_max = x.amax(self.dim, keepdim=not self.flatten)
|
87 |
+
return 0.5 * x_avg + 0.5 * x_max
|
88 |
+
|
89 |
+
|
90 |
+
class FastAdaptiveCatAvgMaxPool(nn.Module):
|
91 |
+
def __init__(self, flatten: bool = False, input_fmt: str = 'NCHW'):
|
92 |
+
super(FastAdaptiveCatAvgMaxPool, self).__init__()
|
93 |
+
self.flatten = flatten
|
94 |
+
self.dim_reduce = get_spatial_dim(input_fmt)
|
95 |
+
if flatten:
|
96 |
+
self.dim_cat = 1
|
97 |
+
else:
|
98 |
+
self.dim_cat = get_channel_dim(input_fmt)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x_avg = x.mean(self.dim_reduce, keepdim=not self.flatten)
|
102 |
+
x_max = x.amax(self.dim_reduce, keepdim=not self.flatten)
|
103 |
+
return torch.cat((x_avg, x_max), self.dim_cat)
|
104 |
+
|
105 |
+
|
106 |
+
class AdaptiveAvgMaxPool2d(nn.Module):
|
107 |
+
def __init__(self, output_size: _int_tuple_2_t = 1):
|
108 |
+
super(AdaptiveAvgMaxPool2d, self).__init__()
|
109 |
+
self.output_size = output_size
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
return adaptive_avgmax_pool2d(x, self.output_size)
|
113 |
+
|
114 |
+
|
115 |
+
class AdaptiveCatAvgMaxPool2d(nn.Module):
|
116 |
+
def __init__(self, output_size: _int_tuple_2_t = 1):
|
117 |
+
super(AdaptiveCatAvgMaxPool2d, self).__init__()
|
118 |
+
self.output_size = output_size
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
return adaptive_catavgmax_pool2d(x, self.output_size)
|
122 |
+
|
123 |
+
|
124 |
+
class SelectAdaptivePool2d(nn.Module):
|
125 |
+
"""Selectable global pooling layer with dynamic input kernel size
|
126 |
+
"""
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
output_size: _int_tuple_2_t = 1,
|
130 |
+
pool_type: str = 'fast',
|
131 |
+
flatten: bool = False,
|
132 |
+
input_fmt: str = 'NCHW',
|
133 |
+
):
|
134 |
+
super(SelectAdaptivePool2d, self).__init__()
|
135 |
+
assert input_fmt in ('NCHW', 'NHWC')
|
136 |
+
self.pool_type = pool_type or '' # convert other falsy values to empty string for consistent TS typing
|
137 |
+
pool_type = pool_type.lower()
|
138 |
+
if not pool_type:
|
139 |
+
self.pool = nn.Identity() # pass through
|
140 |
+
self.flatten = nn.Flatten(1) if flatten else nn.Identity()
|
141 |
+
elif pool_type.startswith('fast') or input_fmt != 'NCHW':
|
142 |
+
assert output_size == 1, 'Fast pooling and non NCHW input formats require output_size == 1.'
|
143 |
+
if pool_type.endswith('catavgmax'):
|
144 |
+
self.pool = FastAdaptiveCatAvgMaxPool(flatten, input_fmt=input_fmt)
|
145 |
+
elif pool_type.endswith('avgmax'):
|
146 |
+
self.pool = FastAdaptiveAvgMaxPool(flatten, input_fmt=input_fmt)
|
147 |
+
elif pool_type.endswith('max'):
|
148 |
+
self.pool = FastAdaptiveMaxPool(flatten, input_fmt=input_fmt)
|
149 |
+
elif pool_type == 'fast' or pool_type.endswith('avg'):
|
150 |
+
self.pool = FastAdaptiveAvgPool(flatten, input_fmt=input_fmt)
|
151 |
+
else:
|
152 |
+
assert False, 'Invalid pool type: %s' % pool_type
|
153 |
+
self.flatten = nn.Identity()
|
154 |
+
else:
|
155 |
+
assert input_fmt == 'NCHW'
|
156 |
+
if pool_type == 'avgmax':
|
157 |
+
self.pool = AdaptiveAvgMaxPool2d(output_size)
|
158 |
+
elif pool_type == 'catavgmax':
|
159 |
+
self.pool = AdaptiveCatAvgMaxPool2d(output_size)
|
160 |
+
elif pool_type == 'max':
|
161 |
+
self.pool = nn.AdaptiveMaxPool2d(output_size)
|
162 |
+
elif pool_type == 'avg':
|
163 |
+
self.pool = nn.AdaptiveAvgPool2d(output_size)
|
164 |
+
else:
|
165 |
+
assert False, 'Invalid pool type: %s' % pool_type
|
166 |
+
self.flatten = nn.Flatten(1) if flatten else nn.Identity()
|
167 |
+
|
168 |
+
def is_identity(self):
|
169 |
+
return not self.pool_type
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
x = self.pool(x)
|
173 |
+
x = self.flatten(x)
|
174 |
+
return x
|
175 |
+
|
176 |
+
def feat_mult(self):
|
177 |
+
return adaptive_pool_feat_mult(self.pool_type)
|
178 |
+
|
179 |
+
def __repr__(self):
|
180 |
+
return self.__class__.__name__ + '(' \
|
181 |
+
+ 'pool_type=' + self.pool_type \
|
182 |
+
+ ', flatten=' + str(self.flatten) + ')'
|
183 |
+
|
pytorch-image-models/timm/layers/attention_pool.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from .config import use_fused_attn
|
8 |
+
from .mlp import Mlp
|
9 |
+
from .weight_init import trunc_normal_tf_
|
10 |
+
|
11 |
+
|
12 |
+
class AttentionPoolLatent(nn.Module):
|
13 |
+
""" Attention pooling w/ latent query
|
14 |
+
"""
|
15 |
+
fused_attn: torch.jit.Final[bool]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
in_features: int,
|
20 |
+
out_features: int = None,
|
21 |
+
embed_dim: int = None,
|
22 |
+
num_heads: int = 8,
|
23 |
+
feat_size: Optional[int] = None,
|
24 |
+
mlp_ratio: float = 4.0,
|
25 |
+
qkv_bias: bool = True,
|
26 |
+
qk_norm: bool = False,
|
27 |
+
latent_len: int = 1,
|
28 |
+
latent_dim: int = None,
|
29 |
+
pos_embed: str = '',
|
30 |
+
pool_type: str = 'token',
|
31 |
+
norm_layer: Optional[nn.Module] = None,
|
32 |
+
drop: float = 0.0,
|
33 |
+
):
|
34 |
+
super().__init__()
|
35 |
+
embed_dim = embed_dim or in_features
|
36 |
+
out_features = out_features or in_features
|
37 |
+
assert embed_dim % num_heads == 0
|
38 |
+
self.num_heads = num_heads
|
39 |
+
self.head_dim = embed_dim // num_heads
|
40 |
+
self.feat_size = feat_size
|
41 |
+
self.scale = self.head_dim ** -0.5
|
42 |
+
self.pool = pool_type
|
43 |
+
self.fused_attn = use_fused_attn()
|
44 |
+
|
45 |
+
if pos_embed == 'abs':
|
46 |
+
assert feat_size is not None
|
47 |
+
self.pos_embed = nn.Parameter(torch.zeros(feat_size, in_features))
|
48 |
+
else:
|
49 |
+
self.pos_embed = None
|
50 |
+
|
51 |
+
self.latent_dim = latent_dim or embed_dim
|
52 |
+
self.latent_len = latent_len
|
53 |
+
self.latent = nn.Parameter(torch.zeros(1, self.latent_len, embed_dim))
|
54 |
+
|
55 |
+
self.q = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
|
56 |
+
self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=qkv_bias)
|
57 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
58 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
59 |
+
self.proj = nn.Linear(embed_dim, embed_dim)
|
60 |
+
self.proj_drop = nn.Dropout(drop)
|
61 |
+
|
62 |
+
self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity()
|
63 |
+
self.mlp = Mlp(embed_dim, int(embed_dim * mlp_ratio))
|
64 |
+
|
65 |
+
self.init_weights()
|
66 |
+
|
67 |
+
def init_weights(self):
|
68 |
+
if self.pos_embed is not None:
|
69 |
+
trunc_normal_tf_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
|
70 |
+
trunc_normal_tf_(self.latent, std=self.latent_dim ** -0.5)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
B, N, C = x.shape
|
74 |
+
|
75 |
+
if self.pos_embed is not None:
|
76 |
+
# FIXME interpolate
|
77 |
+
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
|
78 |
+
|
79 |
+
q_latent = self.latent.expand(B, -1, -1)
|
80 |
+
q = self.q(q_latent).reshape(B, self.latent_len, self.num_heads, self.head_dim).transpose(1, 2)
|
81 |
+
|
82 |
+
kv = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
83 |
+
k, v = kv.unbind(0)
|
84 |
+
|
85 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
86 |
+
|
87 |
+
if self.fused_attn:
|
88 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
89 |
+
else:
|
90 |
+
q = q * self.scale
|
91 |
+
attn = q @ k.transpose(-2, -1)
|
92 |
+
attn = attn.softmax(dim=-1)
|
93 |
+
x = attn @ v
|
94 |
+
x = x.transpose(1, 2).reshape(B, self.latent_len, C)
|
95 |
+
x = self.proj(x)
|
96 |
+
x = self.proj_drop(x)
|
97 |
+
|
98 |
+
x = x + self.mlp(self.norm(x))
|
99 |
+
|
100 |
+
# optional pool if latent seq_len > 1 and pooled output is desired
|
101 |
+
if self.pool == 'token':
|
102 |
+
x = x[:, 0]
|
103 |
+
elif self.pool == 'avg':
|
104 |
+
x = x.mean(1)
|
105 |
+
return x
|
pytorch-image-models/timm/layers/attention_pool2d.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Attention Pool 2D
|
2 |
+
|
3 |
+
Implementations of 2D spatial feature pooling using multi-head attention instead of average pool.
|
4 |
+
|
5 |
+
Based on idea in CLIP by OpenAI, licensed Apache 2.0
|
6 |
+
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
|
7 |
+
|
8 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
9 |
+
"""
|
10 |
+
from typing import Optional, Union, Tuple
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
|
15 |
+
from. config import use_fused_attn
|
16 |
+
from .helpers import to_2tuple
|
17 |
+
from .pos_embed import resample_abs_pos_embed
|
18 |
+
from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding
|
19 |
+
from .weight_init import trunc_normal_
|
20 |
+
|
21 |
+
|
22 |
+
class RotAttentionPool2d(nn.Module):
|
23 |
+
""" Attention based 2D feature pooling w/ rotary (relative) pos embedding.
|
24 |
+
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
|
25 |
+
|
26 |
+
Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed.
|
27 |
+
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
|
28 |
+
|
29 |
+
NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from
|
30 |
+
train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW
|
31 |
+
"""
|
32 |
+
fused_attn: torch.jit.Final[bool]
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
in_features: int,
|
37 |
+
out_features: Optional[int] = None,
|
38 |
+
ref_feat_size: Union[int, Tuple[int, int]] = 7,
|
39 |
+
embed_dim: Optional[int] = None,
|
40 |
+
head_dim: Optional[int] = 64,
|
41 |
+
num_heads: Optional[int] = None,
|
42 |
+
qkv_bias: bool = True,
|
43 |
+
qkv_separate: bool = False,
|
44 |
+
pool_type: str = 'token',
|
45 |
+
class_token: bool = False,
|
46 |
+
drop_rate: float = 0.,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
assert pool_type in ('', 'token')
|
50 |
+
self.embed_dim = embed_dim = embed_dim or in_features
|
51 |
+
self.in_features = in_features
|
52 |
+
self.out_features = out_features or in_features
|
53 |
+
ref_feat_size = to_2tuple(ref_feat_size)
|
54 |
+
if num_heads is not None:
|
55 |
+
assert embed_dim % num_heads == 0
|
56 |
+
head_dim = embed_dim // num_heads
|
57 |
+
else:
|
58 |
+
assert embed_dim % head_dim == 0
|
59 |
+
num_heads = embed_dim // head_dim
|
60 |
+
self.num_heads = num_heads
|
61 |
+
self.head_dim = head_dim
|
62 |
+
self.pool_type = pool_type.lower()
|
63 |
+
self.scale = self.head_dim ** -0.5
|
64 |
+
self.fused_attn = use_fused_attn()
|
65 |
+
|
66 |
+
if class_token:
|
67 |
+
self.cls_token = nn.Parameter(torch.zeros(1, embed_dim))
|
68 |
+
else:
|
69 |
+
self.cls_token = None
|
70 |
+
|
71 |
+
if qkv_separate:
|
72 |
+
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
|
73 |
+
self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias)
|
74 |
+
self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias)
|
75 |
+
self.qkv = None
|
76 |
+
else:
|
77 |
+
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
|
78 |
+
self.drop = nn.Dropout(drop_rate)
|
79 |
+
self.proj = nn.Linear(embed_dim, self.out_features)
|
80 |
+
self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size)
|
81 |
+
|
82 |
+
def init_weights(self, zero_init_last: bool = False):
|
83 |
+
if self.qkv is None:
|
84 |
+
in_features = self.q.in_features
|
85 |
+
trunc_normal_(self.q.weight, std=in_features ** -0.5)
|
86 |
+
nn.init.zeros_(self.q.bias)
|
87 |
+
trunc_normal_(self.k.weight, std=in_features ** -0.5)
|
88 |
+
nn.init.zeros_(self.k.bias)
|
89 |
+
trunc_normal_(self.v.weight, std=in_features ** -0.5)
|
90 |
+
nn.init.zeros_(self.v.bias)
|
91 |
+
else:
|
92 |
+
in_features = self.qkv.in_features
|
93 |
+
trunc_normal_(self.qkv.weight, std=in_features ** -0.5)
|
94 |
+
nn.init.zeros_(self.qkv.bias)
|
95 |
+
|
96 |
+
def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None):
|
97 |
+
# NOTE: this module is being used as a head, so need compatible reset()
|
98 |
+
if pool_type is not None:
|
99 |
+
assert pool_type in ('', 'token')
|
100 |
+
self.pool_type = pool_type
|
101 |
+
if num_classes is not None:
|
102 |
+
self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity()
|
103 |
+
self.out_features = num_classes if num_classes > 0 else self.embed_dim
|
104 |
+
|
105 |
+
def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor:
|
106 |
+
if self.pool_type == 'token':
|
107 |
+
x = x[:, 0]
|
108 |
+
else:
|
109 |
+
# if not pooled, return spatial output without token
|
110 |
+
x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2)
|
111 |
+
return x
|
112 |
+
|
113 |
+
def forward(self, x, pre_logits: bool = False):
|
114 |
+
B, _, H, W = x.shape
|
115 |
+
N = H * W
|
116 |
+
x = x.flatten(2).transpose(1, 2)
|
117 |
+
if self.cls_token is None:
|
118 |
+
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
|
119 |
+
else:
|
120 |
+
x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1)
|
121 |
+
if self.qkv is None:
|
122 |
+
q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
|
123 |
+
k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
|
124 |
+
v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
|
125 |
+
else:
|
126 |
+
x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
127 |
+
q, k, v = x.unbind(0)
|
128 |
+
|
129 |
+
rse, rce = self.pos_embed.get_embed((H, W))
|
130 |
+
q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v)
|
131 |
+
k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v)
|
132 |
+
|
133 |
+
if self.fused_attn:
|
134 |
+
x = nn.functional.scaled_dot_product_attention(q, k, v)
|
135 |
+
else:
|
136 |
+
q = q * self.scale
|
137 |
+
attn = q @ k.transpose(-2, -1)
|
138 |
+
attn = attn.softmax(dim=-1)
|
139 |
+
x = attn @ v
|
140 |
+
x = x.transpose(1, 2).reshape(B, N + 1, -1)
|
141 |
+
x = self.drop(x)
|
142 |
+
if pre_logits:
|
143 |
+
x = self._pool(x, H, W)
|
144 |
+
return x
|
145 |
+
x = self.proj(x)
|
146 |
+
x = self._pool(x, H, W)
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
class AttentionPool2d(nn.Module):
|
151 |
+
""" Attention based 2D feature pooling w/ learned (absolute) pos embedding.
|
152 |
+
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
|
153 |
+
|
154 |
+
It was based on impl in CLIP by OpenAI
|
155 |
+
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
|
156 |
+
|
157 |
+
NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network.
|
158 |
+
"""
|
159 |
+
fused_attn: torch.jit.Final[bool]
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
in_features: int,
|
164 |
+
feat_size: Union[int, Tuple[int, int]] = 7,
|
165 |
+
out_features: Optional[int] = None,
|
166 |
+
embed_dim: Optional[int] = None,
|
167 |
+
head_dim: Optional[int] = 64,
|
168 |
+
num_heads: Optional[int] = None,
|
169 |
+
qkv_bias: bool = True,
|
170 |
+
qkv_separate: bool = False,
|
171 |
+
pool_type: str = 'token',
|
172 |
+
class_token: bool = False,
|
173 |
+
drop_rate: float = 0.,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
assert pool_type in ('', 'token')
|
177 |
+
self.embed_dim = embed_dim = embed_dim or in_features
|
178 |
+
self.in_features = in_features
|
179 |
+
self.out_features = out_features or in_features
|
180 |
+
if num_heads is not None:
|
181 |
+
assert embed_dim % num_heads == 0
|
182 |
+
head_dim = embed_dim // num_heads
|
183 |
+
else:
|
184 |
+
assert embed_dim % head_dim == 0
|
185 |
+
num_heads = embed_dim // head_dim
|
186 |
+
self.feat_size = to_2tuple(feat_size)
|
187 |
+
self.seq_len = self.feat_size[0] * self.feat_size[1]
|
188 |
+
self.num_heads = num_heads
|
189 |
+
self.head_dim = head_dim
|
190 |
+
self.pool_type = pool_type
|
191 |
+
self.scale = self.head_dim ** -0.5
|
192 |
+
self.fused_attn = use_fused_attn()
|
193 |
+
|
194 |
+
if class_token:
|
195 |
+
self.cls_token = nn.Parameter(torch.zeros(1, embed_dim))
|
196 |
+
else:
|
197 |
+
self.cls_token = None
|
198 |
+
|
199 |
+
if qkv_separate:
|
200 |
+
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
|
201 |
+
self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias)
|
202 |
+
self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias)
|
203 |
+
self.qkv = None
|
204 |
+
else:
|
205 |
+
self.q = self.k = self.v = None
|
206 |
+
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
|
207 |
+
self.drop = nn.Dropout(drop_rate)
|
208 |
+
self.proj = nn.Linear(embed_dim, self.out_features)
|
209 |
+
self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features))
|
210 |
+
|
211 |
+
self.init_weights()
|
212 |
+
|
213 |
+
def init_weights(self, zero_init_last: bool = False):
|
214 |
+
if self.qkv is None:
|
215 |
+
in_features = self.q.in_features
|
216 |
+
trunc_normal_(self.q.weight, std=in_features ** -0.5)
|
217 |
+
nn.init.zeros_(self.q.bias)
|
218 |
+
trunc_normal_(self.k.weight, std=in_features ** -0.5)
|
219 |
+
nn.init.zeros_(self.k.bias)
|
220 |
+
trunc_normal_(self.v.weight, std=in_features ** -0.5)
|
221 |
+
nn.init.zeros_(self.v.bias)
|
222 |
+
else:
|
223 |
+
in_features = self.qkv.in_features
|
224 |
+
trunc_normal_(self.qkv.weight, std=in_features ** -0.5)
|
225 |
+
nn.init.zeros_(self.qkv.bias)
|
226 |
+
trunc_normal_(self.pos_embed, std=in_features ** -0.5)
|
227 |
+
|
228 |
+
def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None):
|
229 |
+
# NOTE: this module is being used as a head, so need compatible reset()
|
230 |
+
if pool_type is not None:
|
231 |
+
assert pool_type in ('', 'token')
|
232 |
+
self.pool_type = pool_type
|
233 |
+
if num_classes is not None:
|
234 |
+
self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity()
|
235 |
+
self.out_features = num_classes if num_classes > 0 else self.embed_dim
|
236 |
+
|
237 |
+
def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor:
|
238 |
+
if self.pool_type == 'token':
|
239 |
+
x = x[:, 0]
|
240 |
+
else:
|
241 |
+
# if not pooled, return spatial output without token
|
242 |
+
x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2)
|
243 |
+
return x
|
244 |
+
|
245 |
+
def forward(self, x, pre_logits: bool = False):
|
246 |
+
B, _, H, W = x.shape
|
247 |
+
N = H * W
|
248 |
+
x = x.flatten(2).transpose(1, 2)
|
249 |
+
if self.cls_token is None:
|
250 |
+
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
|
251 |
+
else:
|
252 |
+
x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1)
|
253 |
+
pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1)
|
254 |
+
x = x + pos_embed
|
255 |
+
|
256 |
+
if self.qkv is None:
|
257 |
+
q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
|
258 |
+
k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
|
259 |
+
v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2)
|
260 |
+
else:
|
261 |
+
x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
262 |
+
q, k, v = x.unbind(0)
|
263 |
+
|
264 |
+
if self.fused_attn:
|
265 |
+
x = nn.functional.scaled_dot_product_attention(q, k, v)
|
266 |
+
else:
|
267 |
+
q = q * self.scale
|
268 |
+
attn = q @ k.transpose(-2, -1)
|
269 |
+
attn = attn.softmax(dim=-1)
|
270 |
+
x = attn @ v
|
271 |
+
x = x.transpose(1, 2).reshape(B, N + 1, -1)
|
272 |
+
x = self.drop(x)
|
273 |
+
if pre_logits:
|
274 |
+
x = self._pool(x, H, W)
|
275 |
+
return x
|
276 |
+
x = self.proj(x)
|
277 |
+
x = self._pool(x, H, W)
|
278 |
+
return x
|
pytorch-image-models/timm/layers/blur_pool.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
BlurPool layer inspired by
|
3 |
+
- Kornia's Max_BlurPool2d
|
4 |
+
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
|
5 |
+
|
6 |
+
Hacked together by Chris Ha and Ross Wightman
|
7 |
+
"""
|
8 |
+
from functools import partial
|
9 |
+
from typing import Optional, Type
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from .padding import get_padding
|
17 |
+
from .typing import LayerType
|
18 |
+
|
19 |
+
|
20 |
+
class BlurPool2d(nn.Module):
|
21 |
+
r"""Creates a module that computes blurs and downsample a given feature map.
|
22 |
+
See :cite:`zhang2019shiftinvar` for more details.
|
23 |
+
Corresponds to the Downsample class, which does blurring and subsampling
|
24 |
+
|
25 |
+
Args:
|
26 |
+
channels = Number of input channels
|
27 |
+
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5.
|
28 |
+
stride (int): downsampling filter stride
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
torch.Tensor: the transformed tensor.
|
32 |
+
"""
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
channels: Optional[int] = None,
|
36 |
+
filt_size: int = 3,
|
37 |
+
stride: int = 2,
|
38 |
+
pad_mode: str = 'reflect',
|
39 |
+
) -> None:
|
40 |
+
super(BlurPool2d, self).__init__()
|
41 |
+
assert filt_size > 1
|
42 |
+
self.channels = channels
|
43 |
+
self.filt_size = filt_size
|
44 |
+
self.stride = stride
|
45 |
+
self.pad_mode = pad_mode
|
46 |
+
self.padding = [get_padding(filt_size, stride, dilation=1)] * 4
|
47 |
+
|
48 |
+
coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32))
|
49 |
+
blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :]
|
50 |
+
if channels is not None:
|
51 |
+
blur_filter = blur_filter.repeat(self.channels, 1, 1, 1)
|
52 |
+
self.register_buffer('filt', blur_filter, persistent=False)
|
53 |
+
|
54 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
55 |
+
x = F.pad(x, self.padding, mode=self.pad_mode)
|
56 |
+
if self.channels is None:
|
57 |
+
channels = x.shape[1]
|
58 |
+
weight = self.filt.expand(channels, 1, self.filt_size, self.filt_size)
|
59 |
+
else:
|
60 |
+
channels = self.channels
|
61 |
+
weight = self.filt
|
62 |
+
return F.conv2d(x, weight, stride=self.stride, groups=channels)
|
63 |
+
|
64 |
+
|
65 |
+
def create_aa(
|
66 |
+
aa_layer: LayerType,
|
67 |
+
channels: Optional[int] = None,
|
68 |
+
stride: int = 2,
|
69 |
+
enable: bool = True,
|
70 |
+
noop: Optional[Type[nn.Module]] = nn.Identity
|
71 |
+
) -> nn.Module:
|
72 |
+
""" Anti-aliasing """
|
73 |
+
if not aa_layer or not enable:
|
74 |
+
return noop() if noop is not None else None
|
75 |
+
|
76 |
+
if isinstance(aa_layer, str):
|
77 |
+
aa_layer = aa_layer.lower().replace('_', '').replace('-', '')
|
78 |
+
if aa_layer == 'avg' or aa_layer == 'avgpool':
|
79 |
+
aa_layer = nn.AvgPool2d
|
80 |
+
elif aa_layer == 'blur' or aa_layer == 'blurpool':
|
81 |
+
aa_layer = BlurPool2d
|
82 |
+
elif aa_layer == 'blurpc':
|
83 |
+
aa_layer = partial(BlurPool2d, pad_mode='constant')
|
84 |
+
|
85 |
+
else:
|
86 |
+
assert False, f"Unknown anti-aliasing layer ({aa_layer})."
|
87 |
+
|
88 |
+
try:
|
89 |
+
return aa_layer(channels=channels, stride=stride)
|
90 |
+
except TypeError as e:
|
91 |
+
return aa_layer(stride)
|
pytorch-image-models/timm/layers/bottleneck_attn.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Bottleneck Self Attention (Bottleneck Transformers)
|
2 |
+
|
3 |
+
Paper: `Bottleneck Transformers for Visual Recognition` - https://arxiv.org/abs/2101.11605
|
4 |
+
|
5 |
+
@misc{2101.11605,
|
6 |
+
Author = {Aravind Srinivas and Tsung-Yi Lin and Niki Parmar and Jonathon Shlens and Pieter Abbeel and Ashish Vaswani},
|
7 |
+
Title = {Bottleneck Transformers for Visual Recognition},
|
8 |
+
Year = {2021},
|
9 |
+
}
|
10 |
+
|
11 |
+
Based on ref gist at: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
|
12 |
+
|
13 |
+
This impl is a WIP but given that it is based on the ref gist likely not too far off.
|
14 |
+
|
15 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
16 |
+
"""
|
17 |
+
from typing import List
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from .helpers import to_2tuple, make_divisible
|
24 |
+
from .weight_init import trunc_normal_
|
25 |
+
from .trace_utils import _assert
|
26 |
+
|
27 |
+
|
28 |
+
def rel_logits_1d(q, rel_k, permute_mask: List[int]):
|
29 |
+
""" Compute relative logits along one dimension
|
30 |
+
|
31 |
+
As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
|
32 |
+
Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925
|
33 |
+
|
34 |
+
Args:
|
35 |
+
q: (batch, heads, height, width, dim)
|
36 |
+
rel_k: (2 * width - 1, dim)
|
37 |
+
permute_mask: permute output dim according to this
|
38 |
+
"""
|
39 |
+
B, H, W, dim = q.shape
|
40 |
+
x = (q @ rel_k.transpose(-1, -2))
|
41 |
+
x = x.reshape(-1, W, 2 * W -1)
|
42 |
+
|
43 |
+
# pad to shift from relative to absolute indexing
|
44 |
+
x_pad = F.pad(x, [0, 1]).flatten(1)
|
45 |
+
x_pad = F.pad(x_pad, [0, W - 1])
|
46 |
+
|
47 |
+
# reshape and slice out the padded elements
|
48 |
+
x_pad = x_pad.reshape(-1, W + 1, 2 * W - 1)
|
49 |
+
x = x_pad[:, :W, W - 1:]
|
50 |
+
|
51 |
+
# reshape and tile
|
52 |
+
x = x.reshape(B, H, 1, W, W).expand(-1, -1, H, -1, -1)
|
53 |
+
return x.permute(permute_mask)
|
54 |
+
|
55 |
+
|
56 |
+
class PosEmbedRel(nn.Module):
|
57 |
+
""" Relative Position Embedding
|
58 |
+
As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
|
59 |
+
Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925
|
60 |
+
"""
|
61 |
+
def __init__(self, feat_size, dim_head, scale):
|
62 |
+
super().__init__()
|
63 |
+
self.height, self.width = to_2tuple(feat_size)
|
64 |
+
self.dim_head = dim_head
|
65 |
+
self.height_rel = nn.Parameter(torch.randn(self.height * 2 - 1, dim_head) * scale)
|
66 |
+
self.width_rel = nn.Parameter(torch.randn(self.width * 2 - 1, dim_head) * scale)
|
67 |
+
|
68 |
+
def forward(self, q):
|
69 |
+
B, HW, _ = q.shape
|
70 |
+
|
71 |
+
# relative logits in width dimension.
|
72 |
+
q = q.reshape(B, self.height, self.width, -1)
|
73 |
+
rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4))
|
74 |
+
|
75 |
+
# relative logits in height dimension.
|
76 |
+
q = q.transpose(1, 2)
|
77 |
+
rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2))
|
78 |
+
|
79 |
+
rel_logits = rel_logits_h + rel_logits_w
|
80 |
+
rel_logits = rel_logits.reshape(B, HW, HW)
|
81 |
+
return rel_logits
|
82 |
+
|
83 |
+
|
84 |
+
class BottleneckAttn(nn.Module):
|
85 |
+
""" Bottleneck Attention
|
86 |
+
Paper: `Bottleneck Transformers for Visual Recognition` - https://arxiv.org/abs/2101.11605
|
87 |
+
|
88 |
+
The internal dimensions of the attention module are controlled by the interaction of several arguments.
|
89 |
+
* the output dimension of the module is specified by dim_out, which falls back to input dim if not set
|
90 |
+
* the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim
|
91 |
+
* the query and key (qk) dimensions are determined by
|
92 |
+
* num_heads * dim_head if dim_head is not None
|
93 |
+
* num_heads * (dim_out * attn_ratio // num_heads) if dim_head is None
|
94 |
+
* as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not used
|
95 |
+
|
96 |
+
Args:
|
97 |
+
dim (int): input dimension to the module
|
98 |
+
dim_out (int): output dimension of the module, same as dim if not set
|
99 |
+
stride (int): output stride of the module, avg pool used if stride == 2 (default: 1).
|
100 |
+
num_heads (int): parallel attention heads (default: 4)
|
101 |
+
dim_head (int): dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set
|
102 |
+
qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0)
|
103 |
+
qkv_bias (bool): add bias to q, k, and v projections
|
104 |
+
scale_pos_embed (bool): scale the position embedding as well as Q @ K
|
105 |
+
"""
|
106 |
+
def __init__(
|
107 |
+
self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=None,
|
108 |
+
qk_ratio=1.0, qkv_bias=False, scale_pos_embed=False):
|
109 |
+
super().__init__()
|
110 |
+
assert feat_size is not None, 'A concrete feature size matching expected input (H, W) is required'
|
111 |
+
dim_out = dim_out or dim
|
112 |
+
assert dim_out % num_heads == 0
|
113 |
+
self.num_heads = num_heads
|
114 |
+
self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads
|
115 |
+
self.dim_head_v = dim_out // self.num_heads
|
116 |
+
self.dim_out_qk = num_heads * self.dim_head_qk
|
117 |
+
self.dim_out_v = num_heads * self.dim_head_v
|
118 |
+
self.scale = self.dim_head_qk ** -0.5
|
119 |
+
self.scale_pos_embed = scale_pos_embed
|
120 |
+
|
121 |
+
self.qkv = nn.Conv2d(dim, self.dim_out_qk * 2 + self.dim_out_v, 1, bias=qkv_bias)
|
122 |
+
|
123 |
+
# NOTE I'm only supporting relative pos embedding for now
|
124 |
+
self.pos_embed = PosEmbedRel(feat_size, dim_head=self.dim_head_qk, scale=self.scale)
|
125 |
+
|
126 |
+
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity()
|
127 |
+
|
128 |
+
self.reset_parameters()
|
129 |
+
|
130 |
+
def reset_parameters(self):
|
131 |
+
trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) # fan-in
|
132 |
+
trunc_normal_(self.pos_embed.height_rel, std=self.scale)
|
133 |
+
trunc_normal_(self.pos_embed.width_rel, std=self.scale)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
B, C, H, W = x.shape
|
137 |
+
_assert(H == self.pos_embed.height, '')
|
138 |
+
_assert(W == self.pos_embed.width, '')
|
139 |
+
|
140 |
+
x = self.qkv(x) # B, (2 * dim_head_qk + dim_head_v) * num_heads, H, W
|
141 |
+
|
142 |
+
# NOTE head vs channel split ordering in qkv projection was decided before I allowed qk to differ from v
|
143 |
+
# So, this is more verbose than if heads were before qkv splits, but throughput is not impacted.
|
144 |
+
q, k, v = torch.split(x, [self.dim_out_qk, self.dim_out_qk, self.dim_out_v], dim=1)
|
145 |
+
q = q.reshape(B * self.num_heads, self.dim_head_qk, -1).transpose(-1, -2)
|
146 |
+
k = k.reshape(B * self.num_heads, self.dim_head_qk, -1) # no transpose, for q @ k
|
147 |
+
v = v.reshape(B * self.num_heads, self.dim_head_v, -1).transpose(-1, -2)
|
148 |
+
|
149 |
+
if self.scale_pos_embed:
|
150 |
+
attn = (q @ k + self.pos_embed(q)) * self.scale # B * num_heads, H * W, H * W
|
151 |
+
else:
|
152 |
+
attn = (q @ k) * self.scale + self.pos_embed(q)
|
153 |
+
attn = attn.softmax(dim=-1)
|
154 |
+
|
155 |
+
out = (attn @ v).transpose(-1, -2).reshape(B, self.dim_out_v, H, W) # B, dim_out, H, W
|
156 |
+
out = self.pool(out)
|
157 |
+
return out
|
pytorch-image-models/timm/layers/cbam.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CBAM (sort-of) Attention
|
2 |
+
|
3 |
+
Experimental impl of CBAM: Convolutional Block Attention Module: https://arxiv.org/abs/1807.06521
|
4 |
+
|
5 |
+
WARNING: Results with these attention layers have been mixed. They can significantly reduce performance on
|
6 |
+
some tasks, especially fine-grained it seems. I may end up removing this impl.
|
7 |
+
|
8 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
9 |
+
"""
|
10 |
+
import torch
|
11 |
+
from torch import nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from .conv_bn_act import ConvNormAct
|
15 |
+
from .create_act import create_act_layer, get_act_layer
|
16 |
+
from .helpers import make_divisible
|
17 |
+
|
18 |
+
|
19 |
+
class ChannelAttn(nn.Module):
|
20 |
+
""" Original CBAM channel attention module, currently avg + max pool variant only.
|
21 |
+
"""
|
22 |
+
def __init__(
|
23 |
+
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1,
|
24 |
+
act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False):
|
25 |
+
super(ChannelAttn, self).__init__()
|
26 |
+
if not rd_channels:
|
27 |
+
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.)
|
28 |
+
self.fc1 = nn.Conv2d(channels, rd_channels, 1, bias=mlp_bias)
|
29 |
+
self.act = act_layer(inplace=True)
|
30 |
+
self.fc2 = nn.Conv2d(rd_channels, channels, 1, bias=mlp_bias)
|
31 |
+
self.gate = create_act_layer(gate_layer)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
x_avg = self.fc2(self.act(self.fc1(x.mean((2, 3), keepdim=True))))
|
35 |
+
x_max = self.fc2(self.act(self.fc1(x.amax((2, 3), keepdim=True))))
|
36 |
+
return x * self.gate(x_avg + x_max)
|
37 |
+
|
38 |
+
|
39 |
+
class LightChannelAttn(ChannelAttn):
|
40 |
+
"""An experimental 'lightweight' that sums avg + max pool first
|
41 |
+
"""
|
42 |
+
def __init__(
|
43 |
+
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1,
|
44 |
+
act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False):
|
45 |
+
super(LightChannelAttn, self).__init__(
|
46 |
+
channels, rd_ratio, rd_channels, rd_divisor, act_layer, gate_layer, mlp_bias)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
x_pool = 0.5 * x.mean((2, 3), keepdim=True) + 0.5 * x.amax((2, 3), keepdim=True)
|
50 |
+
x_attn = self.fc2(self.act(self.fc1(x_pool)))
|
51 |
+
return x * F.sigmoid(x_attn)
|
52 |
+
|
53 |
+
|
54 |
+
class SpatialAttn(nn.Module):
|
55 |
+
""" Original CBAM spatial attention module
|
56 |
+
"""
|
57 |
+
def __init__(self, kernel_size=7, gate_layer='sigmoid'):
|
58 |
+
super(SpatialAttn, self).__init__()
|
59 |
+
self.conv = ConvNormAct(2, 1, kernel_size, apply_act=False)
|
60 |
+
self.gate = create_act_layer(gate_layer)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
x_attn = torch.cat([x.mean(dim=1, keepdim=True), x.amax(dim=1, keepdim=True)], dim=1)
|
64 |
+
x_attn = self.conv(x_attn)
|
65 |
+
return x * self.gate(x_attn)
|
66 |
+
|
67 |
+
|
68 |
+
class LightSpatialAttn(nn.Module):
|
69 |
+
"""An experimental 'lightweight' variant that sums avg_pool and max_pool results.
|
70 |
+
"""
|
71 |
+
def __init__(self, kernel_size=7, gate_layer='sigmoid'):
|
72 |
+
super(LightSpatialAttn, self).__init__()
|
73 |
+
self.conv = ConvNormAct(1, 1, kernel_size, apply_act=False)
|
74 |
+
self.gate = create_act_layer(gate_layer)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x_attn = 0.5 * x.mean(dim=1, keepdim=True) + 0.5 * x.amax(dim=1, keepdim=True)
|
78 |
+
x_attn = self.conv(x_attn)
|
79 |
+
return x * self.gate(x_attn)
|
80 |
+
|
81 |
+
|
82 |
+
class CbamModule(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1,
|
85 |
+
spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False):
|
86 |
+
super(CbamModule, self).__init__()
|
87 |
+
self.channel = ChannelAttn(
|
88 |
+
channels, rd_ratio=rd_ratio, rd_channels=rd_channels,
|
89 |
+
rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias)
|
90 |
+
self.spatial = SpatialAttn(spatial_kernel_size, gate_layer=gate_layer)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
x = self.channel(x)
|
94 |
+
x = self.spatial(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class LightCbamModule(nn.Module):
|
99 |
+
def __init__(
|
100 |
+
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1,
|
101 |
+
spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False):
|
102 |
+
super(LightCbamModule, self).__init__()
|
103 |
+
self.channel = LightChannelAttn(
|
104 |
+
channels, rd_ratio=rd_ratio, rd_channels=rd_channels,
|
105 |
+
rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias)
|
106 |
+
self.spatial = LightSpatialAttn(spatial_kernel_size)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.channel(x)
|
110 |
+
x = self.spatial(x)
|
111 |
+
return x
|
112 |
+
|
pytorch-image-models/timm/layers/classifier.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Classifier head and layer factory
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
from collections import OrderedDict
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional, Union, Callable
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch.nn import functional as F
|
12 |
+
|
13 |
+
from .adaptive_avgmax_pool import SelectAdaptivePool2d
|
14 |
+
from .create_act import get_act_layer
|
15 |
+
from .create_norm import get_norm_layer
|
16 |
+
|
17 |
+
|
18 |
+
def _create_pool(
|
19 |
+
num_features: int,
|
20 |
+
num_classes: int,
|
21 |
+
pool_type: str = 'avg',
|
22 |
+
use_conv: bool = False,
|
23 |
+
input_fmt: Optional[str] = None,
|
24 |
+
):
|
25 |
+
flatten_in_pool = not use_conv # flatten when we use a Linear layer after pooling
|
26 |
+
if not pool_type:
|
27 |
+
flatten_in_pool = False # disable flattening if pooling is pass-through (no pooling)
|
28 |
+
global_pool = SelectAdaptivePool2d(
|
29 |
+
pool_type=pool_type,
|
30 |
+
flatten=flatten_in_pool,
|
31 |
+
input_fmt=input_fmt,
|
32 |
+
)
|
33 |
+
num_pooled_features = num_features * global_pool.feat_mult()
|
34 |
+
return global_pool, num_pooled_features
|
35 |
+
|
36 |
+
|
37 |
+
def _create_fc(num_features, num_classes, use_conv=False):
|
38 |
+
if num_classes <= 0:
|
39 |
+
fc = nn.Identity() # pass-through (no classifier)
|
40 |
+
elif use_conv:
|
41 |
+
fc = nn.Conv2d(num_features, num_classes, 1, bias=True)
|
42 |
+
else:
|
43 |
+
fc = nn.Linear(num_features, num_classes, bias=True)
|
44 |
+
return fc
|
45 |
+
|
46 |
+
|
47 |
+
def create_classifier(
|
48 |
+
num_features: int,
|
49 |
+
num_classes: int,
|
50 |
+
pool_type: str = 'avg',
|
51 |
+
use_conv: bool = False,
|
52 |
+
input_fmt: str = 'NCHW',
|
53 |
+
drop_rate: Optional[float] = None,
|
54 |
+
):
|
55 |
+
global_pool, num_pooled_features = _create_pool(
|
56 |
+
num_features,
|
57 |
+
num_classes,
|
58 |
+
pool_type,
|
59 |
+
use_conv=use_conv,
|
60 |
+
input_fmt=input_fmt,
|
61 |
+
)
|
62 |
+
fc = _create_fc(
|
63 |
+
num_pooled_features,
|
64 |
+
num_classes,
|
65 |
+
use_conv=use_conv,
|
66 |
+
)
|
67 |
+
if drop_rate is not None:
|
68 |
+
dropout = nn.Dropout(drop_rate)
|
69 |
+
return global_pool, dropout, fc
|
70 |
+
return global_pool, fc
|
71 |
+
|
72 |
+
|
73 |
+
class ClassifierHead(nn.Module):
|
74 |
+
"""Classifier head w/ configurable global pooling and dropout."""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
in_features: int,
|
79 |
+
num_classes: int,
|
80 |
+
pool_type: str = 'avg',
|
81 |
+
drop_rate: float = 0.,
|
82 |
+
use_conv: bool = False,
|
83 |
+
input_fmt: str = 'NCHW',
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
Args:
|
87 |
+
in_features: The number of input features.
|
88 |
+
num_classes: The number of classes for the final classifier layer (output).
|
89 |
+
pool_type: Global pooling type, pooling disabled if empty string ('').
|
90 |
+
drop_rate: Pre-classifier dropout rate.
|
91 |
+
"""
|
92 |
+
super(ClassifierHead, self).__init__()
|
93 |
+
self.in_features = in_features
|
94 |
+
self.use_conv = use_conv
|
95 |
+
self.input_fmt = input_fmt
|
96 |
+
|
97 |
+
global_pool, fc = create_classifier(
|
98 |
+
in_features,
|
99 |
+
num_classes,
|
100 |
+
pool_type,
|
101 |
+
use_conv=use_conv,
|
102 |
+
input_fmt=input_fmt,
|
103 |
+
)
|
104 |
+
self.global_pool = global_pool
|
105 |
+
self.drop = nn.Dropout(drop_rate)
|
106 |
+
self.fc = fc
|
107 |
+
self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity()
|
108 |
+
|
109 |
+
def reset(self, num_classes: int, pool_type: Optional[str] = None):
|
110 |
+
if pool_type is not None and pool_type != self.global_pool.pool_type:
|
111 |
+
self.global_pool, self.fc = create_classifier(
|
112 |
+
self.in_features,
|
113 |
+
num_classes,
|
114 |
+
pool_type=pool_type,
|
115 |
+
use_conv=self.use_conv,
|
116 |
+
input_fmt=self.input_fmt,
|
117 |
+
)
|
118 |
+
self.flatten = nn.Flatten(1) if self.use_conv and pool_type else nn.Identity()
|
119 |
+
else:
|
120 |
+
num_pooled_features = self.in_features * self.global_pool.feat_mult()
|
121 |
+
self.fc = _create_fc(
|
122 |
+
num_pooled_features,
|
123 |
+
num_classes,
|
124 |
+
use_conv=self.use_conv,
|
125 |
+
)
|
126 |
+
|
127 |
+
def forward(self, x, pre_logits: bool = False):
|
128 |
+
x = self.global_pool(x)
|
129 |
+
x = self.drop(x)
|
130 |
+
if pre_logits:
|
131 |
+
return self.flatten(x)
|
132 |
+
x = self.fc(x)
|
133 |
+
return self.flatten(x)
|
134 |
+
|
135 |
+
|
136 |
+
class NormMlpClassifierHead(nn.Module):
|
137 |
+
""" A Pool -> Norm -> Mlp Classifier Head for '2D' NCHW tensors
|
138 |
+
"""
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
in_features: int,
|
142 |
+
num_classes: int,
|
143 |
+
hidden_size: Optional[int] = None,
|
144 |
+
pool_type: str = 'avg',
|
145 |
+
drop_rate: float = 0.,
|
146 |
+
norm_layer: Union[str, Callable] = 'layernorm2d',
|
147 |
+
act_layer: Union[str, Callable] = 'tanh',
|
148 |
+
):
|
149 |
+
"""
|
150 |
+
Args:
|
151 |
+
in_features: The number of input features.
|
152 |
+
num_classes: The number of classes for the final classifier layer (output).
|
153 |
+
hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None.
|
154 |
+
pool_type: Global pooling type, pooling disabled if empty string ('').
|
155 |
+
drop_rate: Pre-classifier dropout rate.
|
156 |
+
norm_layer: Normalization layer type.
|
157 |
+
act_layer: MLP activation layer type (only used if hidden_size is not None).
|
158 |
+
"""
|
159 |
+
super().__init__()
|
160 |
+
self.in_features = in_features
|
161 |
+
self.hidden_size = hidden_size
|
162 |
+
self.num_features = in_features
|
163 |
+
self.use_conv = not pool_type
|
164 |
+
norm_layer = get_norm_layer(norm_layer)
|
165 |
+
act_layer = get_act_layer(act_layer)
|
166 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear
|
167 |
+
|
168 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
|
169 |
+
self.norm = norm_layer(in_features)
|
170 |
+
self.flatten = nn.Flatten(1) if pool_type else nn.Identity()
|
171 |
+
if hidden_size:
|
172 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
173 |
+
('fc', linear_layer(in_features, hidden_size)),
|
174 |
+
('act', act_layer()),
|
175 |
+
]))
|
176 |
+
self.num_features = hidden_size
|
177 |
+
else:
|
178 |
+
self.pre_logits = nn.Identity()
|
179 |
+
self.drop = nn.Dropout(drop_rate)
|
180 |
+
self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
181 |
+
|
182 |
+
def reset(self, num_classes: int, pool_type: Optional[str] = None):
|
183 |
+
if pool_type is not None:
|
184 |
+
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
|
185 |
+
self.flatten = nn.Flatten(1) if pool_type else nn.Identity()
|
186 |
+
self.use_conv = self.global_pool.is_identity()
|
187 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear
|
188 |
+
if self.hidden_size:
|
189 |
+
if ((isinstance(self.pre_logits.fc, nn.Conv2d) and not self.use_conv) or
|
190 |
+
(isinstance(self.pre_logits.fc, nn.Linear) and self.use_conv)):
|
191 |
+
with torch.no_grad():
|
192 |
+
new_fc = linear_layer(self.in_features, self.hidden_size)
|
193 |
+
new_fc.weight.copy_(self.pre_logits.fc.weight.reshape(new_fc.weight.shape))
|
194 |
+
new_fc.bias.copy_(self.pre_logits.fc.bias)
|
195 |
+
self.pre_logits.fc = new_fc
|
196 |
+
self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
197 |
+
|
198 |
+
def forward(self, x, pre_logits: bool = False):
|
199 |
+
x = self.global_pool(x)
|
200 |
+
x = self.norm(x)
|
201 |
+
x = self.flatten(x)
|
202 |
+
x = self.pre_logits(x)
|
203 |
+
x = self.drop(x)
|
204 |
+
if pre_logits:
|
205 |
+
return x
|
206 |
+
x = self.fc(x)
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class ClNormMlpClassifierHead(nn.Module):
|
211 |
+
""" A Pool -> Norm -> Mlp Classifier Head for n-D NxxC tensors
|
212 |
+
"""
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
in_features: int,
|
216 |
+
num_classes: int,
|
217 |
+
hidden_size: Optional[int] = None,
|
218 |
+
pool_type: str = 'avg',
|
219 |
+
drop_rate: float = 0.,
|
220 |
+
norm_layer: Union[str, Callable] = 'layernorm',
|
221 |
+
act_layer: Union[str, Callable] = 'gelu',
|
222 |
+
input_fmt: str = 'NHWC',
|
223 |
+
):
|
224 |
+
"""
|
225 |
+
Args:
|
226 |
+
in_features: The number of input features.
|
227 |
+
num_classes: The number of classes for the final classifier layer (output).
|
228 |
+
hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None.
|
229 |
+
pool_type: Global pooling type, pooling disabled if empty string ('').
|
230 |
+
drop_rate: Pre-classifier dropout rate.
|
231 |
+
norm_layer: Normalization layer type.
|
232 |
+
act_layer: MLP activation layer type (only used if hidden_size is not None).
|
233 |
+
"""
|
234 |
+
super().__init__()
|
235 |
+
self.in_features = in_features
|
236 |
+
self.hidden_size = hidden_size
|
237 |
+
self.num_features = in_features
|
238 |
+
assert pool_type in ('', 'avg', 'max', 'avgmax')
|
239 |
+
self.pool_type = pool_type
|
240 |
+
assert input_fmt in ('NHWC', 'NLC')
|
241 |
+
self.pool_dim = 1 if input_fmt == 'NLC' else (1, 2)
|
242 |
+
norm_layer = get_norm_layer(norm_layer)
|
243 |
+
act_layer = get_act_layer(act_layer)
|
244 |
+
|
245 |
+
self.norm = norm_layer(in_features)
|
246 |
+
if hidden_size:
|
247 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
248 |
+
('fc', nn.Linear(in_features, hidden_size)),
|
249 |
+
('act', act_layer()),
|
250 |
+
]))
|
251 |
+
self.num_features = hidden_size
|
252 |
+
else:
|
253 |
+
self.pre_logits = nn.Identity()
|
254 |
+
self.drop = nn.Dropout(drop_rate)
|
255 |
+
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
256 |
+
|
257 |
+
def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False):
|
258 |
+
if pool_type is not None:
|
259 |
+
self.pool_type = pool_type
|
260 |
+
if reset_other:
|
261 |
+
self.pre_logits = nn.Identity()
|
262 |
+
self.norm = nn.Identity()
|
263 |
+
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
264 |
+
|
265 |
+
def _global_pool(self, x):
|
266 |
+
if self.pool_type:
|
267 |
+
if self.pool_type == 'avg':
|
268 |
+
x = x.mean(dim=self.pool_dim)
|
269 |
+
elif self.pool_type == 'max':
|
270 |
+
x = x.amax(dim=self.pool_dim)
|
271 |
+
elif self.pool_type == 'avgmax':
|
272 |
+
x = 0.5 * (x.amax(dim=self.pool_dim) + x.mean(dim=self.pool_dim))
|
273 |
+
return x
|
274 |
+
|
275 |
+
def forward(self, x, pre_logits: bool = False):
|
276 |
+
x = self._global_pool(x)
|
277 |
+
x = self.norm(x)
|
278 |
+
x = self.pre_logits(x)
|
279 |
+
x = self.drop(x)
|
280 |
+
if pre_logits:
|
281 |
+
return x
|
282 |
+
x = self.fc(x)
|
283 |
+
return x
|
pytorch-image-models/timm/layers/cond_conv2d.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch Conditionally Parameterized Convolution (CondConv)
|
2 |
+
|
3 |
+
Paper: CondConv: Conditionally Parameterized Convolutions for Efficient Inference
|
4 |
+
(https://arxiv.org/abs/1904.04971)
|
5 |
+
|
6 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
7 |
+
"""
|
8 |
+
|
9 |
+
import math
|
10 |
+
from functools import partial
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from torch import nn as nn
|
14 |
+
from torch.nn import functional as F
|
15 |
+
|
16 |
+
from .helpers import to_2tuple
|
17 |
+
from .conv2d_same import conv2d_same
|
18 |
+
from .padding import get_padding_value
|
19 |
+
|
20 |
+
|
21 |
+
def get_condconv_initializer(initializer, num_experts, expert_shape):
|
22 |
+
def condconv_initializer(weight):
|
23 |
+
"""CondConv initializer function."""
|
24 |
+
num_params = np.prod(expert_shape)
|
25 |
+
if (len(weight.shape) != 2 or weight.shape[0] != num_experts or
|
26 |
+
weight.shape[1] != num_params):
|
27 |
+
raise (ValueError(
|
28 |
+
'CondConv variables must have shape [num_experts, num_params]'))
|
29 |
+
for i in range(num_experts):
|
30 |
+
initializer(weight[i].view(expert_shape))
|
31 |
+
return condconv_initializer
|
32 |
+
|
33 |
+
|
34 |
+
class CondConv2d(nn.Module):
|
35 |
+
""" Conditionally Parameterized Convolution
|
36 |
+
Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py
|
37 |
+
|
38 |
+
Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion:
|
39 |
+
https://github.com/pytorch/pytorch/issues/17983
|
40 |
+
"""
|
41 |
+
__constants__ = ['in_channels', 'out_channels', 'dynamic_padding']
|
42 |
+
|
43 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
44 |
+
stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4):
|
45 |
+
super(CondConv2d, self).__init__()
|
46 |
+
|
47 |
+
self.in_channels = in_channels
|
48 |
+
self.out_channels = out_channels
|
49 |
+
self.kernel_size = to_2tuple(kernel_size)
|
50 |
+
self.stride = to_2tuple(stride)
|
51 |
+
padding_val, is_padding_dynamic = get_padding_value(
|
52 |
+
padding, kernel_size, stride=stride, dilation=dilation)
|
53 |
+
self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript
|
54 |
+
self.padding = to_2tuple(padding_val)
|
55 |
+
self.dilation = to_2tuple(dilation)
|
56 |
+
self.groups = groups
|
57 |
+
self.num_experts = num_experts
|
58 |
+
|
59 |
+
self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size
|
60 |
+
weight_num_param = 1
|
61 |
+
for wd in self.weight_shape:
|
62 |
+
weight_num_param *= wd
|
63 |
+
self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param))
|
64 |
+
|
65 |
+
if bias:
|
66 |
+
self.bias_shape = (self.out_channels,)
|
67 |
+
self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels))
|
68 |
+
else:
|
69 |
+
self.register_parameter('bias', None)
|
70 |
+
|
71 |
+
self.reset_parameters()
|
72 |
+
|
73 |
+
def reset_parameters(self):
|
74 |
+
init_weight = get_condconv_initializer(
|
75 |
+
partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape)
|
76 |
+
init_weight(self.weight)
|
77 |
+
if self.bias is not None:
|
78 |
+
fan_in = np.prod(self.weight_shape[1:])
|
79 |
+
bound = 1 / math.sqrt(fan_in)
|
80 |
+
init_bias = get_condconv_initializer(
|
81 |
+
partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape)
|
82 |
+
init_bias(self.bias)
|
83 |
+
|
84 |
+
def forward(self, x, routing_weights):
|
85 |
+
B, C, H, W = x.shape
|
86 |
+
weight = torch.matmul(routing_weights, self.weight)
|
87 |
+
new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size
|
88 |
+
weight = weight.view(new_weight_shape)
|
89 |
+
bias = None
|
90 |
+
if self.bias is not None:
|
91 |
+
bias = torch.matmul(routing_weights, self.bias)
|
92 |
+
bias = bias.view(B * self.out_channels)
|
93 |
+
# move batch elements with channels so each batch element can be efficiently convolved with separate kernel
|
94 |
+
# reshape instead of view to work with channels_last input
|
95 |
+
x = x.reshape(1, B * C, H, W)
|
96 |
+
if self.dynamic_padding:
|
97 |
+
out = conv2d_same(
|
98 |
+
x, weight, bias, stride=self.stride, padding=self.padding,
|
99 |
+
dilation=self.dilation, groups=self.groups * B)
|
100 |
+
else:
|
101 |
+
out = F.conv2d(
|
102 |
+
x, weight, bias, stride=self.stride, padding=self.padding,
|
103 |
+
dilation=self.dilation, groups=self.groups * B)
|
104 |
+
out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])
|
105 |
+
|
106 |
+
# Literal port (from TF definition)
|
107 |
+
# x = torch.split(x, 1, 0)
|
108 |
+
# weight = torch.split(weight, 1, 0)
|
109 |
+
# if self.bias is not None:
|
110 |
+
# bias = torch.matmul(routing_weights, self.bias)
|
111 |
+
# bias = torch.split(bias, 1, 0)
|
112 |
+
# else:
|
113 |
+
# bias = [None] * B
|
114 |
+
# out = []
|
115 |
+
# for xi, wi, bi in zip(x, weight, bias):
|
116 |
+
# wi = wi.view(*self.weight_shape)
|
117 |
+
# if bi is not None:
|
118 |
+
# bi = bi.view(*self.bias_shape)
|
119 |
+
# out.append(self.conv_fn(
|
120 |
+
# xi, wi, bi, stride=self.stride, padding=self.padding,
|
121 |
+
# dilation=self.dilation, groups=self.groups))
|
122 |
+
# out = torch.cat(out, 0)
|
123 |
+
return out
|
pytorch-image-models/timm/layers/config.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Model / Layer Config singleton state
|
2 |
+
"""
|
3 |
+
import os
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'is_exportable', 'is_scriptable', 'is_no_jit', 'use_fused_attn',
|
11 |
+
'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config', 'set_fused_attn'
|
12 |
+
]
|
13 |
+
|
14 |
+
# Set to True if prefer to have layers with no jit optimization (includes activations)
|
15 |
+
_NO_JIT = False
|
16 |
+
|
17 |
+
# Set to True if prefer to have activation layers with no jit optimization
|
18 |
+
# NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying
|
19 |
+
# the jit flags so far are activations. This will change as more layers are updated and/or added.
|
20 |
+
_NO_ACTIVATION_JIT = False
|
21 |
+
|
22 |
+
# Set to True if exporting a model with Same padding via ONNX
|
23 |
+
_EXPORTABLE = False
|
24 |
+
|
25 |
+
# Set to True if wanting to use torch.jit.script on a model
|
26 |
+
_SCRIPTABLE = False
|
27 |
+
|
28 |
+
|
29 |
+
# use torch.scaled_dot_product_attention where possible
|
30 |
+
_HAS_FUSED_ATTN = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
31 |
+
if 'TIMM_FUSED_ATTN' in os.environ:
|
32 |
+
_USE_FUSED_ATTN = int(os.environ['TIMM_FUSED_ATTN'])
|
33 |
+
else:
|
34 |
+
_USE_FUSED_ATTN = 1 # 0 == off, 1 == on (for tested use), 2 == on (for experimental use)
|
35 |
+
|
36 |
+
|
37 |
+
def is_no_jit():
|
38 |
+
return _NO_JIT
|
39 |
+
|
40 |
+
|
41 |
+
class set_no_jit:
|
42 |
+
def __init__(self, mode: bool) -> None:
|
43 |
+
global _NO_JIT
|
44 |
+
self.prev = _NO_JIT
|
45 |
+
_NO_JIT = mode
|
46 |
+
|
47 |
+
def __enter__(self) -> None:
|
48 |
+
pass
|
49 |
+
|
50 |
+
def __exit__(self, *args: Any) -> bool:
|
51 |
+
global _NO_JIT
|
52 |
+
_NO_JIT = self.prev
|
53 |
+
return False
|
54 |
+
|
55 |
+
|
56 |
+
def is_exportable():
|
57 |
+
return _EXPORTABLE
|
58 |
+
|
59 |
+
|
60 |
+
class set_exportable:
|
61 |
+
def __init__(self, mode: bool) -> None:
|
62 |
+
global _EXPORTABLE
|
63 |
+
self.prev = _EXPORTABLE
|
64 |
+
_EXPORTABLE = mode
|
65 |
+
|
66 |
+
def __enter__(self) -> None:
|
67 |
+
pass
|
68 |
+
|
69 |
+
def __exit__(self, *args: Any) -> bool:
|
70 |
+
global _EXPORTABLE
|
71 |
+
_EXPORTABLE = self.prev
|
72 |
+
return False
|
73 |
+
|
74 |
+
|
75 |
+
def is_scriptable():
|
76 |
+
return _SCRIPTABLE
|
77 |
+
|
78 |
+
|
79 |
+
class set_scriptable:
|
80 |
+
def __init__(self, mode: bool) -> None:
|
81 |
+
global _SCRIPTABLE
|
82 |
+
self.prev = _SCRIPTABLE
|
83 |
+
_SCRIPTABLE = mode
|
84 |
+
|
85 |
+
def __enter__(self) -> None:
|
86 |
+
pass
|
87 |
+
|
88 |
+
def __exit__(self, *args: Any) -> bool:
|
89 |
+
global _SCRIPTABLE
|
90 |
+
_SCRIPTABLE = self.prev
|
91 |
+
return False
|
92 |
+
|
93 |
+
|
94 |
+
class set_layer_config:
|
95 |
+
""" Layer config context manager that allows setting all layer config flags at once.
|
96 |
+
If a flag arg is None, it will not change the current value.
|
97 |
+
"""
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
scriptable: Optional[bool] = None,
|
101 |
+
exportable: Optional[bool] = None,
|
102 |
+
no_jit: Optional[bool] = None,
|
103 |
+
no_activation_jit: Optional[bool] = None):
|
104 |
+
global _SCRIPTABLE
|
105 |
+
global _EXPORTABLE
|
106 |
+
global _NO_JIT
|
107 |
+
global _NO_ACTIVATION_JIT
|
108 |
+
self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT
|
109 |
+
if scriptable is not None:
|
110 |
+
_SCRIPTABLE = scriptable
|
111 |
+
if exportable is not None:
|
112 |
+
_EXPORTABLE = exportable
|
113 |
+
if no_jit is not None:
|
114 |
+
_NO_JIT = no_jit
|
115 |
+
if no_activation_jit is not None:
|
116 |
+
_NO_ACTIVATION_JIT = no_activation_jit
|
117 |
+
|
118 |
+
def __enter__(self) -> None:
|
119 |
+
pass
|
120 |
+
|
121 |
+
def __exit__(self, *args: Any) -> bool:
|
122 |
+
global _SCRIPTABLE
|
123 |
+
global _EXPORTABLE
|
124 |
+
global _NO_JIT
|
125 |
+
global _NO_ACTIVATION_JIT
|
126 |
+
_SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev
|
127 |
+
return False
|
128 |
+
|
129 |
+
|
130 |
+
def use_fused_attn(experimental: bool = False) -> bool:
|
131 |
+
# NOTE: ONNX export cannot handle F.scaled_dot_product_attention as of pytorch 2.0
|
132 |
+
if not _HAS_FUSED_ATTN or _EXPORTABLE:
|
133 |
+
return False
|
134 |
+
if experimental:
|
135 |
+
return _USE_FUSED_ATTN > 1
|
136 |
+
return _USE_FUSED_ATTN > 0
|
137 |
+
|
138 |
+
|
139 |
+
def set_fused_attn(enable: bool = True, experimental: bool = False):
|
140 |
+
global _USE_FUSED_ATTN
|
141 |
+
if not _HAS_FUSED_ATTN:
|
142 |
+
warnings.warn('This version of pytorch does not have F.scaled_dot_product_attention, fused_attn flag ignored.')
|
143 |
+
return
|
144 |
+
if experimental and enable:
|
145 |
+
_USE_FUSED_ATTN = 2
|
146 |
+
elif enable:
|
147 |
+
_USE_FUSED_ATTN = 1
|
148 |
+
else:
|
149 |
+
_USE_FUSED_ATTN = 0
|
pytorch-image-models/timm/layers/conv2d_same.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Conv2d w/ Same Padding
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from typing import Tuple, Optional
|
9 |
+
|
10 |
+
from .config import is_exportable, is_scriptable
|
11 |
+
from .padding import pad_same, pad_same_arg, get_padding_value
|
12 |
+
|
13 |
+
|
14 |
+
_USE_EXPORT_CONV = False
|
15 |
+
|
16 |
+
|
17 |
+
def conv2d_same(
|
18 |
+
x,
|
19 |
+
weight: torch.Tensor,
|
20 |
+
bias: Optional[torch.Tensor] = None,
|
21 |
+
stride: Tuple[int, int] = (1, 1),
|
22 |
+
padding: Tuple[int, int] = (0, 0),
|
23 |
+
dilation: Tuple[int, int] = (1, 1),
|
24 |
+
groups: int = 1,
|
25 |
+
):
|
26 |
+
x = pad_same(x, weight.shape[-2:], stride, dilation)
|
27 |
+
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
|
28 |
+
|
29 |
+
|
30 |
+
class Conv2dSame(nn.Conv2d):
|
31 |
+
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
in_channels,
|
37 |
+
out_channels,
|
38 |
+
kernel_size,
|
39 |
+
stride=1,
|
40 |
+
padding=0,
|
41 |
+
dilation=1,
|
42 |
+
groups=1,
|
43 |
+
bias=True,
|
44 |
+
):
|
45 |
+
super(Conv2dSame, self).__init__(
|
46 |
+
in_channels, out_channels, kernel_size,
|
47 |
+
stride, 0, dilation, groups, bias,
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
return conv2d_same(
|
52 |
+
x, self.weight, self.bias,
|
53 |
+
self.stride, self.padding, self.dilation, self.groups,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
class Conv2dSameExport(nn.Conv2d):
|
58 |
+
""" ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions
|
59 |
+
|
60 |
+
NOTE: This does not currently work with torch.jit.script
|
61 |
+
"""
|
62 |
+
|
63 |
+
# pylint: disable=unused-argument
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
in_channels,
|
67 |
+
out_channels,
|
68 |
+
kernel_size,
|
69 |
+
stride=1,
|
70 |
+
padding=0,
|
71 |
+
dilation=1,
|
72 |
+
groups=1,
|
73 |
+
bias=True,
|
74 |
+
):
|
75 |
+
super(Conv2dSameExport, self).__init__(
|
76 |
+
in_channels, out_channels, kernel_size,
|
77 |
+
stride, 0, dilation, groups, bias,
|
78 |
+
)
|
79 |
+
self.pad = None
|
80 |
+
self.pad_input_size = (0, 0)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
input_size = x.size()[-2:]
|
84 |
+
if self.pad is None:
|
85 |
+
pad_arg = pad_same_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation)
|
86 |
+
self.pad = nn.ZeroPad2d(pad_arg)
|
87 |
+
self.pad_input_size = input_size
|
88 |
+
|
89 |
+
x = self.pad(x)
|
90 |
+
return F.conv2d(
|
91 |
+
x, self.weight, self.bias,
|
92 |
+
self.stride, self.padding, self.dilation, self.groups,
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
|
97 |
+
padding = kwargs.pop('padding', '')
|
98 |
+
kwargs.setdefault('bias', False)
|
99 |
+
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
|
100 |
+
if is_dynamic:
|
101 |
+
if _USE_EXPORT_CONV and is_exportable():
|
102 |
+
# older PyTorch ver needed this to export same padding reasonably
|
103 |
+
assert not is_scriptable() # Conv2DSameExport does not work with jit
|
104 |
+
return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs)
|
105 |
+
else:
|
106 |
+
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
|
107 |
+
else:
|
108 |
+
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
|
109 |
+
|
110 |
+
|
pytorch-image-models/timm/layers/conv_bn_act.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Conv2d + BN + Act
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
from typing import Any, Dict, Optional, Type
|
6 |
+
|
7 |
+
from torch import nn as nn
|
8 |
+
|
9 |
+
from .typing import LayerType, PadType
|
10 |
+
from .blur_pool import create_aa
|
11 |
+
from .create_conv2d import create_conv2d
|
12 |
+
from .create_norm_act import get_norm_act_layer
|
13 |
+
|
14 |
+
|
15 |
+
class ConvNormAct(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
in_channels: int,
|
19 |
+
out_channels: int,
|
20 |
+
kernel_size: int = 1,
|
21 |
+
stride: int = 1,
|
22 |
+
padding: PadType = '',
|
23 |
+
dilation: int = 1,
|
24 |
+
groups: int = 1,
|
25 |
+
bias: bool = False,
|
26 |
+
apply_norm: bool = True,
|
27 |
+
apply_act: bool = True,
|
28 |
+
norm_layer: LayerType = nn.BatchNorm2d,
|
29 |
+
act_layer: Optional[LayerType] = nn.ReLU,
|
30 |
+
aa_layer: Optional[LayerType] = None,
|
31 |
+
drop_layer: Optional[Type[nn.Module]] = None,
|
32 |
+
conv_kwargs: Optional[Dict[str, Any]] = None,
|
33 |
+
norm_kwargs: Optional[Dict[str, Any]] = None,
|
34 |
+
act_kwargs: Optional[Dict[str, Any]] = None,
|
35 |
+
):
|
36 |
+
super(ConvNormAct, self).__init__()
|
37 |
+
conv_kwargs = conv_kwargs or {}
|
38 |
+
norm_kwargs = norm_kwargs or {}
|
39 |
+
act_kwargs = act_kwargs or {}
|
40 |
+
use_aa = aa_layer is not None and stride > 1
|
41 |
+
|
42 |
+
self.conv = create_conv2d(
|
43 |
+
in_channels,
|
44 |
+
out_channels,
|
45 |
+
kernel_size,
|
46 |
+
stride=1 if use_aa else stride,
|
47 |
+
padding=padding,
|
48 |
+
dilation=dilation,
|
49 |
+
groups=groups,
|
50 |
+
bias=bias,
|
51 |
+
**conv_kwargs,
|
52 |
+
)
|
53 |
+
|
54 |
+
if apply_norm:
|
55 |
+
# NOTE for backwards compatibility with models that use separate norm and act layer definitions
|
56 |
+
norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
|
57 |
+
# NOTE for backwards (weight) compatibility, norm layer name remains `.bn`
|
58 |
+
if drop_layer:
|
59 |
+
norm_kwargs['drop_layer'] = drop_layer
|
60 |
+
self.bn = norm_act_layer(
|
61 |
+
out_channels,
|
62 |
+
apply_act=apply_act,
|
63 |
+
act_kwargs=act_kwargs,
|
64 |
+
**norm_kwargs,
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
self.bn = nn.Sequential()
|
68 |
+
if drop_layer:
|
69 |
+
norm_kwargs['drop_layer'] = drop_layer
|
70 |
+
self.bn.add_module('drop', drop_layer())
|
71 |
+
|
72 |
+
self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa, noop=None)
|
73 |
+
|
74 |
+
@property
|
75 |
+
def in_channels(self):
|
76 |
+
return self.conv.in_channels
|
77 |
+
|
78 |
+
@property
|
79 |
+
def out_channels(self):
|
80 |
+
return self.conv.out_channels
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
x = self.conv(x)
|
84 |
+
x = self.bn(x)
|
85 |
+
aa = getattr(self, 'aa', None)
|
86 |
+
if aa is not None:
|
87 |
+
x = self.aa(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
ConvBnAct = ConvNormAct
|
92 |
+
ConvNormActAa = ConvNormAct # backwards compat, when they were separate
|
pytorch-image-models/timm/layers/create_act.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Activation Factory
|
2 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
3 |
+
"""
|
4 |
+
from typing import Union, Callable, Type
|
5 |
+
|
6 |
+
from .activations import *
|
7 |
+
from .activations_me import *
|
8 |
+
from .config import is_exportable, is_scriptable
|
9 |
+
|
10 |
+
# PyTorch has an optimized, native 'silu' (aka 'swish') operator as of PyTorch 1.7.
|
11 |
+
# Also hardsigmoid, hardswish, and soon mish. This code will use native version if present.
|
12 |
+
# Eventually, the custom SiLU, Mish, Hard*, layers will be removed and only native variants will be used.
|
13 |
+
_has_silu = 'silu' in dir(torch.nn.functional)
|
14 |
+
_has_hardswish = 'hardswish' in dir(torch.nn.functional)
|
15 |
+
_has_hardsigmoid = 'hardsigmoid' in dir(torch.nn.functional)
|
16 |
+
_has_mish = 'mish' in dir(torch.nn.functional)
|
17 |
+
|
18 |
+
|
19 |
+
_ACT_FN_DEFAULT = dict(
|
20 |
+
silu=F.silu if _has_silu else swish,
|
21 |
+
swish=F.silu if _has_silu else swish,
|
22 |
+
mish=F.mish if _has_mish else mish,
|
23 |
+
relu=F.relu,
|
24 |
+
relu6=F.relu6,
|
25 |
+
leaky_relu=F.leaky_relu,
|
26 |
+
elu=F.elu,
|
27 |
+
celu=F.celu,
|
28 |
+
selu=F.selu,
|
29 |
+
gelu=gelu,
|
30 |
+
gelu_tanh=gelu_tanh,
|
31 |
+
quick_gelu=quick_gelu,
|
32 |
+
sigmoid=sigmoid,
|
33 |
+
tanh=tanh,
|
34 |
+
hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid,
|
35 |
+
hard_swish=F.hardswish if _has_hardswish else hard_swish,
|
36 |
+
hard_mish=hard_mish,
|
37 |
+
)
|
38 |
+
|
39 |
+
_ACT_FN_ME = dict(
|
40 |
+
silu=F.silu if _has_silu else swish_me,
|
41 |
+
swish=F.silu if _has_silu else swish_me,
|
42 |
+
mish=F.mish if _has_mish else mish_me,
|
43 |
+
hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid_me,
|
44 |
+
hard_swish=F.hardswish if _has_hardswish else hard_swish_me,
|
45 |
+
hard_mish=hard_mish_me,
|
46 |
+
)
|
47 |
+
|
48 |
+
_ACT_FNS = (_ACT_FN_ME, _ACT_FN_DEFAULT)
|
49 |
+
for a in _ACT_FNS:
|
50 |
+
a.setdefault('hardsigmoid', a.get('hard_sigmoid'))
|
51 |
+
a.setdefault('hardswish', a.get('hard_swish'))
|
52 |
+
|
53 |
+
|
54 |
+
_ACT_LAYER_DEFAULT = dict(
|
55 |
+
silu=nn.SiLU if _has_silu else Swish,
|
56 |
+
swish=nn.SiLU if _has_silu else Swish,
|
57 |
+
mish=nn.Mish if _has_mish else Mish,
|
58 |
+
relu=nn.ReLU,
|
59 |
+
relu6=nn.ReLU6,
|
60 |
+
leaky_relu=nn.LeakyReLU,
|
61 |
+
elu=nn.ELU,
|
62 |
+
prelu=PReLU,
|
63 |
+
celu=nn.CELU,
|
64 |
+
selu=nn.SELU,
|
65 |
+
gelu=GELU,
|
66 |
+
gelu_tanh=GELUTanh,
|
67 |
+
quick_gelu=QuickGELU,
|
68 |
+
sigmoid=Sigmoid,
|
69 |
+
tanh=Tanh,
|
70 |
+
hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoid,
|
71 |
+
hard_swish=nn.Hardswish if _has_hardswish else HardSwish,
|
72 |
+
hard_mish=HardMish,
|
73 |
+
identity=nn.Identity,
|
74 |
+
)
|
75 |
+
|
76 |
+
_ACT_LAYER_ME = dict(
|
77 |
+
silu=nn.SiLU if _has_silu else SwishMe,
|
78 |
+
swish=nn.SiLU if _has_silu else SwishMe,
|
79 |
+
mish=nn.Mish if _has_mish else MishMe,
|
80 |
+
hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoidMe,
|
81 |
+
hard_swish=nn.Hardswish if _has_hardswish else HardSwishMe,
|
82 |
+
hard_mish=HardMishMe,
|
83 |
+
)
|
84 |
+
|
85 |
+
_ACT_LAYERS = (_ACT_LAYER_ME, _ACT_LAYER_DEFAULT)
|
86 |
+
for a in _ACT_LAYERS:
|
87 |
+
a.setdefault('hardsigmoid', a.get('hard_sigmoid'))
|
88 |
+
a.setdefault('hardswish', a.get('hard_swish'))
|
89 |
+
|
90 |
+
|
91 |
+
def get_act_fn(name: Union[Callable, str] = 'relu'):
|
92 |
+
""" Activation Function Factory
|
93 |
+
Fetching activation fns by name with this function allows export or torch script friendly
|
94 |
+
functions to be returned dynamically based on current config.
|
95 |
+
"""
|
96 |
+
if not name:
|
97 |
+
return None
|
98 |
+
if isinstance(name, Callable):
|
99 |
+
return name
|
100 |
+
name = name.lower()
|
101 |
+
if not (is_exportable() or is_scriptable()):
|
102 |
+
# If not exporting or scripting the model, first look for a memory-efficient version with
|
103 |
+
# custom autograd, then fallback
|
104 |
+
if name in _ACT_FN_ME:
|
105 |
+
return _ACT_FN_ME[name]
|
106 |
+
return _ACT_FN_DEFAULT[name]
|
107 |
+
|
108 |
+
|
109 |
+
def get_act_layer(name: Union[Type[nn.Module], str] = 'relu'):
|
110 |
+
""" Activation Layer Factory
|
111 |
+
Fetching activation layers by name with this function allows export or torch script friendly
|
112 |
+
functions to be returned dynamically based on current config.
|
113 |
+
"""
|
114 |
+
if name is None:
|
115 |
+
return None
|
116 |
+
if not isinstance(name, str):
|
117 |
+
# callable, module, etc
|
118 |
+
return name
|
119 |
+
if not name:
|
120 |
+
return None
|
121 |
+
name = name.lower()
|
122 |
+
if not (is_exportable() or is_scriptable()):
|
123 |
+
if name in _ACT_LAYER_ME:
|
124 |
+
return _ACT_LAYER_ME[name]
|
125 |
+
return _ACT_LAYER_DEFAULT[name]
|
126 |
+
|
127 |
+
|
128 |
+
def create_act_layer(name: Union[Type[nn.Module], str], inplace=None, **kwargs):
|
129 |
+
act_layer = get_act_layer(name)
|
130 |
+
if act_layer is None:
|
131 |
+
return None
|
132 |
+
if inplace is None:
|
133 |
+
return act_layer(**kwargs)
|
134 |
+
try:
|
135 |
+
return act_layer(inplace=inplace, **kwargs)
|
136 |
+
except TypeError:
|
137 |
+
# recover if act layer doesn't have inplace arg
|
138 |
+
return act_layer(**kwargs)
|
pytorch-image-models/timm/layers/create_attn.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Attention Factory
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from .bottleneck_attn import BottleneckAttn
|
9 |
+
from .cbam import CbamModule, LightCbamModule
|
10 |
+
from .eca import EcaModule, CecaModule
|
11 |
+
from .gather_excite import GatherExcite
|
12 |
+
from .global_context import GlobalContext
|
13 |
+
from .halo_attn import HaloAttn
|
14 |
+
from .lambda_layer import LambdaLayer
|
15 |
+
from .non_local_attn import NonLocalAttn, BatNonLocalAttn
|
16 |
+
from .selective_kernel import SelectiveKernel
|
17 |
+
from .split_attn import SplitAttn
|
18 |
+
from .squeeze_excite import SEModule, EffectiveSEModule
|
19 |
+
|
20 |
+
|
21 |
+
def get_attn(attn_type):
|
22 |
+
if isinstance(attn_type, torch.nn.Module):
|
23 |
+
return attn_type
|
24 |
+
module_cls = None
|
25 |
+
if attn_type:
|
26 |
+
if isinstance(attn_type, str):
|
27 |
+
attn_type = attn_type.lower()
|
28 |
+
# Lightweight attention modules (channel and/or coarse spatial).
|
29 |
+
# Typically added to existing network architecture blocks in addition to existing convolutions.
|
30 |
+
if attn_type == 'se':
|
31 |
+
module_cls = SEModule
|
32 |
+
elif attn_type == 'ese':
|
33 |
+
module_cls = EffectiveSEModule
|
34 |
+
elif attn_type == 'eca':
|
35 |
+
module_cls = EcaModule
|
36 |
+
elif attn_type == 'ecam':
|
37 |
+
module_cls = partial(EcaModule, use_mlp=True)
|
38 |
+
elif attn_type == 'ceca':
|
39 |
+
module_cls = CecaModule
|
40 |
+
elif attn_type == 'ge':
|
41 |
+
module_cls = GatherExcite
|
42 |
+
elif attn_type == 'gc':
|
43 |
+
module_cls = GlobalContext
|
44 |
+
elif attn_type == 'gca':
|
45 |
+
module_cls = partial(GlobalContext, fuse_add=True, fuse_scale=False)
|
46 |
+
elif attn_type == 'cbam':
|
47 |
+
module_cls = CbamModule
|
48 |
+
elif attn_type == 'lcbam':
|
49 |
+
module_cls = LightCbamModule
|
50 |
+
|
51 |
+
# Attention / attention-like modules w/ significant params
|
52 |
+
# Typically replace some of the existing workhorse convs in a network architecture.
|
53 |
+
# All of these accept a stride argument and can spatially downsample the input.
|
54 |
+
elif attn_type == 'sk':
|
55 |
+
module_cls = SelectiveKernel
|
56 |
+
elif attn_type == 'splat':
|
57 |
+
module_cls = SplitAttn
|
58 |
+
|
59 |
+
# Self-attention / attention-like modules w/ significant compute and/or params
|
60 |
+
# Typically replace some of the existing workhorse convs in a network architecture.
|
61 |
+
# All of these accept a stride argument and can spatially downsample the input.
|
62 |
+
elif attn_type == 'lambda':
|
63 |
+
return LambdaLayer
|
64 |
+
elif attn_type == 'bottleneck':
|
65 |
+
return BottleneckAttn
|
66 |
+
elif attn_type == 'halo':
|
67 |
+
return HaloAttn
|
68 |
+
elif attn_type == 'nl':
|
69 |
+
module_cls = NonLocalAttn
|
70 |
+
elif attn_type == 'bat':
|
71 |
+
module_cls = BatNonLocalAttn
|
72 |
+
|
73 |
+
# Woops!
|
74 |
+
else:
|
75 |
+
assert False, "Invalid attn module (%s)" % attn_type
|
76 |
+
elif isinstance(attn_type, bool):
|
77 |
+
if attn_type:
|
78 |
+
module_cls = SEModule
|
79 |
+
else:
|
80 |
+
module_cls = attn_type
|
81 |
+
return module_cls
|
82 |
+
|
83 |
+
|
84 |
+
def create_attn(attn_type, channels, **kwargs):
|
85 |
+
module_cls = get_attn(attn_type)
|
86 |
+
if module_cls is not None:
|
87 |
+
# NOTE: it's expected the first (positional) argument of all attention layers is the # input channels
|
88 |
+
return module_cls(channels, **kwargs)
|
89 |
+
return None
|
pytorch-image-models/timm/layers/create_conv2d.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Create Conv2d Factory Method
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
|
6 |
+
from .mixed_conv2d import MixedConv2d
|
7 |
+
from .cond_conv2d import CondConv2d
|
8 |
+
from .conv2d_same import create_conv2d_pad
|
9 |
+
|
10 |
+
|
11 |
+
def create_conv2d(in_channels, out_channels, kernel_size, **kwargs):
|
12 |
+
""" Select a 2d convolution implementation based on arguments
|
13 |
+
Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d.
|
14 |
+
|
15 |
+
Used extensively by EfficientNet, MobileNetv3 and related networks.
|
16 |
+
"""
|
17 |
+
if isinstance(kernel_size, list):
|
18 |
+
assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently
|
19 |
+
if 'groups' in kwargs:
|
20 |
+
groups = kwargs.pop('groups')
|
21 |
+
if groups == in_channels:
|
22 |
+
kwargs['depthwise'] = True
|
23 |
+
else:
|
24 |
+
assert groups == 1
|
25 |
+
# We're going to use only lists for defining the MixedConv2d kernel groups,
|
26 |
+
# ints, tuples, other iterables will continue to pass to normal conv and specify h, w.
|
27 |
+
m = MixedConv2d(in_channels, out_channels, kernel_size, **kwargs)
|
28 |
+
else:
|
29 |
+
depthwise = kwargs.pop('depthwise', False)
|
30 |
+
# for DW out_channels must be multiple of in_channels as must have out_channels % groups == 0
|
31 |
+
groups = in_channels if depthwise else kwargs.pop('groups', 1)
|
32 |
+
if 'num_experts' in kwargs and kwargs['num_experts'] > 0:
|
33 |
+
m = CondConv2d(in_channels, out_channels, kernel_size, groups=groups, **kwargs)
|
34 |
+
else:
|
35 |
+
m = create_conv2d_pad(in_channels, out_channels, kernel_size, groups=groups, **kwargs)
|
36 |
+
return m
|
pytorch-image-models/timm/layers/evo_norm.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" EvoNorm in PyTorch
|
2 |
+
|
3 |
+
Based on `Evolving Normalization-Activation Layers` - https://arxiv.org/abs/2004.02967
|
4 |
+
@inproceedings{NEURIPS2020,
|
5 |
+
author = {Liu, Hanxiao and Brock, Andy and Simonyan, Karen and Le, Quoc},
|
6 |
+
booktitle = {Advances in Neural Information Processing Systems},
|
7 |
+
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
|
8 |
+
pages = {13539--13550},
|
9 |
+
publisher = {Curran Associates, Inc.},
|
10 |
+
title = {Evolving Normalization-Activation Layers},
|
11 |
+
url = {https://proceedings.neurips.cc/paper/2020/file/9d4c03631b8b0c85ae08bf05eda37d0f-Paper.pdf},
|
12 |
+
volume = {33},
|
13 |
+
year = {2020}
|
14 |
+
}
|
15 |
+
|
16 |
+
An attempt at getting decent performing EvoNorms running in PyTorch.
|
17 |
+
While faster than other PyTorch impl, still quite a ways off the built-in BatchNorm
|
18 |
+
in terms of memory usage and throughput on GPUs.
|
19 |
+
|
20 |
+
I'm testing these modules on TPU w/ PyTorch XLA. Promising start but
|
21 |
+
currently working around some issues with builtin torch/tensor.var/std. Unlike
|
22 |
+
GPU, similar train speeds for EvoNormS variants and BatchNorm.
|
23 |
+
|
24 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
25 |
+
"""
|
26 |
+
from typing import Sequence, Union
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.nn as nn
|
30 |
+
import torch.nn.functional as F
|
31 |
+
|
32 |
+
from .create_act import create_act_layer
|
33 |
+
from .trace_utils import _assert
|
34 |
+
|
35 |
+
|
36 |
+
def instance_std(x, eps: float = 1e-5):
|
37 |
+
std = x.float().var(dim=(2, 3), unbiased=False, keepdim=True).add(eps).sqrt().to(x.dtype)
|
38 |
+
return std.expand(x.shape)
|
39 |
+
|
40 |
+
|
41 |
+
def instance_std_tpu(x, eps: float = 1e-5):
|
42 |
+
std = manual_var(x, dim=(2, 3)).add(eps).sqrt()
|
43 |
+
return std.expand(x.shape)
|
44 |
+
# instance_std = instance_std_tpu
|
45 |
+
|
46 |
+
|
47 |
+
def instance_rms(x, eps: float = 1e-5):
|
48 |
+
rms = x.float().square().mean(dim=(2, 3), keepdim=True).add(eps).sqrt().to(x.dtype)
|
49 |
+
return rms.expand(x.shape)
|
50 |
+
|
51 |
+
|
52 |
+
def manual_var(x, dim: Union[int, Sequence[int]], diff_sqm: bool = False):
|
53 |
+
xm = x.mean(dim=dim, keepdim=True)
|
54 |
+
if diff_sqm:
|
55 |
+
# difference of squared mean and mean squared, faster on TPU can be less stable
|
56 |
+
var = ((x * x).mean(dim=dim, keepdim=True) - (xm * xm)).clamp(0)
|
57 |
+
else:
|
58 |
+
var = ((x - xm) * (x - xm)).mean(dim=dim, keepdim=True)
|
59 |
+
return var
|
60 |
+
|
61 |
+
|
62 |
+
def group_std(x, groups: int = 32, eps: float = 1e-5, flatten: bool = False):
|
63 |
+
B, C, H, W = x.shape
|
64 |
+
x_dtype = x.dtype
|
65 |
+
_assert(C % groups == 0, '')
|
66 |
+
if flatten:
|
67 |
+
x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues
|
68 |
+
std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype)
|
69 |
+
else:
|
70 |
+
x = x.reshape(B, groups, C // groups, H, W)
|
71 |
+
std = x.float().var(dim=(2, 3, 4), unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype)
|
72 |
+
return std.expand(x.shape).reshape(B, C, H, W)
|
73 |
+
|
74 |
+
|
75 |
+
def group_std_tpu(x, groups: int = 32, eps: float = 1e-5, diff_sqm: bool = False, flatten: bool = False):
|
76 |
+
# This is a workaround for some stability / odd behaviour of .var and .std
|
77 |
+
# running on PyTorch XLA w/ TPUs. These manual var impl are producing much better results
|
78 |
+
B, C, H, W = x.shape
|
79 |
+
_assert(C % groups == 0, '')
|
80 |
+
if flatten:
|
81 |
+
x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues
|
82 |
+
var = manual_var(x, dim=-1, diff_sqm=diff_sqm)
|
83 |
+
else:
|
84 |
+
x = x.reshape(B, groups, C // groups, H, W)
|
85 |
+
var = manual_var(x, dim=(2, 3, 4), diff_sqm=diff_sqm)
|
86 |
+
return var.add(eps).sqrt().expand(x.shape).reshape(B, C, H, W)
|
87 |
+
#group_std = group_std_tpu # FIXME TPU temporary
|
88 |
+
|
89 |
+
|
90 |
+
def group_rms(x, groups: int = 32, eps: float = 1e-5):
|
91 |
+
B, C, H, W = x.shape
|
92 |
+
_assert(C % groups == 0, '')
|
93 |
+
x_dtype = x.dtype
|
94 |
+
x = x.reshape(B, groups, C // groups, H, W)
|
95 |
+
rms = x.float().square().mean(dim=(2, 3, 4), keepdim=True).add(eps).sqrt_().to(x_dtype)
|
96 |
+
return rms.expand(x.shape).reshape(B, C, H, W)
|
97 |
+
|
98 |
+
|
99 |
+
class EvoNorm2dB0(nn.Module):
|
100 |
+
def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-3, **_):
|
101 |
+
super().__init__()
|
102 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
103 |
+
self.momentum = momentum
|
104 |
+
self.eps = eps
|
105 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
106 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
107 |
+
self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None
|
108 |
+
self.register_buffer('running_var', torch.ones(num_features))
|
109 |
+
self.reset_parameters()
|
110 |
+
|
111 |
+
def reset_parameters(self):
|
112 |
+
nn.init.ones_(self.weight)
|
113 |
+
nn.init.zeros_(self.bias)
|
114 |
+
if self.v is not None:
|
115 |
+
nn.init.ones_(self.v)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
119 |
+
x_dtype = x.dtype
|
120 |
+
v_shape = (1, -1, 1, 1)
|
121 |
+
if self.v is not None:
|
122 |
+
if self.training:
|
123 |
+
var = x.float().var(dim=(0, 2, 3), unbiased=False)
|
124 |
+
# var = manual_var(x, dim=(0, 2, 3)).squeeze()
|
125 |
+
n = x.numel() / x.shape[1]
|
126 |
+
self.running_var.copy_(
|
127 |
+
self.running_var * (1 - self.momentum) +
|
128 |
+
var.detach() * self.momentum * (n / (n - 1)))
|
129 |
+
else:
|
130 |
+
var = self.running_var
|
131 |
+
left = var.add(self.eps).sqrt_().to(x_dtype).view(v_shape).expand_as(x)
|
132 |
+
v = self.v.to(x_dtype).view(v_shape)
|
133 |
+
right = x * v + instance_std(x, self.eps)
|
134 |
+
x = x / left.max(right)
|
135 |
+
return x * self.weight.to(x_dtype).view(v_shape) + self.bias.to(x_dtype).view(v_shape)
|
136 |
+
|
137 |
+
|
138 |
+
class EvoNorm2dB1(nn.Module):
|
139 |
+
def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, **_):
|
140 |
+
super().__init__()
|
141 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
142 |
+
self.momentum = momentum
|
143 |
+
self.eps = eps
|
144 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
145 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
146 |
+
self.register_buffer('running_var', torch.ones(num_features))
|
147 |
+
self.reset_parameters()
|
148 |
+
|
149 |
+
def reset_parameters(self):
|
150 |
+
nn.init.ones_(self.weight)
|
151 |
+
nn.init.zeros_(self.bias)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
155 |
+
x_dtype = x.dtype
|
156 |
+
v_shape = (1, -1, 1, 1)
|
157 |
+
if self.apply_act:
|
158 |
+
if self.training:
|
159 |
+
var = x.float().var(dim=(0, 2, 3), unbiased=False)
|
160 |
+
n = x.numel() / x.shape[1]
|
161 |
+
self.running_var.copy_(
|
162 |
+
self.running_var * (1 - self.momentum) +
|
163 |
+
var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1)))
|
164 |
+
else:
|
165 |
+
var = self.running_var
|
166 |
+
var = var.to(x_dtype).view(v_shape)
|
167 |
+
left = var.add(self.eps).sqrt_()
|
168 |
+
right = (x + 1) * instance_rms(x, self.eps)
|
169 |
+
x = x / left.max(right)
|
170 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
171 |
+
|
172 |
+
|
173 |
+
class EvoNorm2dB2(nn.Module):
|
174 |
+
def __init__(self, num_features, apply_act=True, momentum=0.1, eps=1e-5, **_):
|
175 |
+
super().__init__()
|
176 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
177 |
+
self.momentum = momentum
|
178 |
+
self.eps = eps
|
179 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
180 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
181 |
+
self.register_buffer('running_var', torch.ones(num_features))
|
182 |
+
self.reset_parameters()
|
183 |
+
|
184 |
+
def reset_parameters(self):
|
185 |
+
nn.init.ones_(self.weight)
|
186 |
+
nn.init.zeros_(self.bias)
|
187 |
+
|
188 |
+
def forward(self, x):
|
189 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
190 |
+
x_dtype = x.dtype
|
191 |
+
v_shape = (1, -1, 1, 1)
|
192 |
+
if self.apply_act:
|
193 |
+
if self.training:
|
194 |
+
var = x.float().var(dim=(0, 2, 3), unbiased=False)
|
195 |
+
n = x.numel() / x.shape[1]
|
196 |
+
self.running_var.copy_(
|
197 |
+
self.running_var * (1 - self.momentum) +
|
198 |
+
var.detach().to(self.running_var.dtype) * self.momentum * (n / (n - 1)))
|
199 |
+
else:
|
200 |
+
var = self.running_var
|
201 |
+
var = var.to(x_dtype).view(v_shape)
|
202 |
+
left = var.add(self.eps).sqrt_()
|
203 |
+
right = instance_rms(x, self.eps) - x
|
204 |
+
x = x / left.max(right)
|
205 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
206 |
+
|
207 |
+
|
208 |
+
class EvoNorm2dS0(nn.Module):
|
209 |
+
def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-5, **_):
|
210 |
+
super().__init__()
|
211 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
212 |
+
if group_size:
|
213 |
+
assert num_features % group_size == 0
|
214 |
+
self.groups = num_features // group_size
|
215 |
+
else:
|
216 |
+
self.groups = groups
|
217 |
+
self.eps = eps
|
218 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
219 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
220 |
+
self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None
|
221 |
+
self.reset_parameters()
|
222 |
+
|
223 |
+
def reset_parameters(self):
|
224 |
+
nn.init.ones_(self.weight)
|
225 |
+
nn.init.zeros_(self.bias)
|
226 |
+
if self.v is not None:
|
227 |
+
nn.init.ones_(self.v)
|
228 |
+
|
229 |
+
def forward(self, x):
|
230 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
231 |
+
x_dtype = x.dtype
|
232 |
+
v_shape = (1, -1, 1, 1)
|
233 |
+
if self.v is not None:
|
234 |
+
v = self.v.view(v_shape).to(x_dtype)
|
235 |
+
x = x * (x * v).sigmoid() / group_std(x, self.groups, self.eps)
|
236 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
237 |
+
|
238 |
+
|
239 |
+
class EvoNorm2dS0a(EvoNorm2dS0):
|
240 |
+
def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-3, **_):
|
241 |
+
super().__init__(
|
242 |
+
num_features, groups=groups, group_size=group_size, apply_act=apply_act, eps=eps)
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
246 |
+
x_dtype = x.dtype
|
247 |
+
v_shape = (1, -1, 1, 1)
|
248 |
+
d = group_std(x, self.groups, self.eps)
|
249 |
+
if self.v is not None:
|
250 |
+
v = self.v.view(v_shape).to(x_dtype)
|
251 |
+
x = x * (x * v).sigmoid()
|
252 |
+
x = x / d
|
253 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
254 |
+
|
255 |
+
|
256 |
+
class EvoNorm2dS1(nn.Module):
|
257 |
+
def __init__(
|
258 |
+
self, num_features, groups=32, group_size=None,
|
259 |
+
apply_act=True, act_layer=None, eps=1e-5, **_):
|
260 |
+
super().__init__()
|
261 |
+
act_layer = act_layer or nn.SiLU
|
262 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
263 |
+
if act_layer is not None and apply_act:
|
264 |
+
self.act = create_act_layer(act_layer)
|
265 |
+
else:
|
266 |
+
self.act = nn.Identity()
|
267 |
+
if group_size:
|
268 |
+
assert num_features % group_size == 0
|
269 |
+
self.groups = num_features // group_size
|
270 |
+
else:
|
271 |
+
self.groups = groups
|
272 |
+
self.eps = eps
|
273 |
+
self.pre_act_norm = False
|
274 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
275 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
276 |
+
self.reset_parameters()
|
277 |
+
|
278 |
+
def reset_parameters(self):
|
279 |
+
nn.init.ones_(self.weight)
|
280 |
+
nn.init.zeros_(self.bias)
|
281 |
+
|
282 |
+
def forward(self, x):
|
283 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
284 |
+
x_dtype = x.dtype
|
285 |
+
v_shape = (1, -1, 1, 1)
|
286 |
+
if self.apply_act:
|
287 |
+
x = self.act(x) / group_std(x, self.groups, self.eps)
|
288 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
289 |
+
|
290 |
+
|
291 |
+
class EvoNorm2dS1a(EvoNorm2dS1):
|
292 |
+
def __init__(
|
293 |
+
self, num_features, groups=32, group_size=None,
|
294 |
+
apply_act=True, act_layer=None, eps=1e-3, **_):
|
295 |
+
super().__init__(
|
296 |
+
num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps)
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
300 |
+
x_dtype = x.dtype
|
301 |
+
v_shape = (1, -1, 1, 1)
|
302 |
+
x = self.act(x) / group_std(x, self.groups, self.eps)
|
303 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
304 |
+
|
305 |
+
|
306 |
+
class EvoNorm2dS2(nn.Module):
|
307 |
+
def __init__(
|
308 |
+
self, num_features, groups=32, group_size=None,
|
309 |
+
apply_act=True, act_layer=None, eps=1e-5, **_):
|
310 |
+
super().__init__()
|
311 |
+
act_layer = act_layer or nn.SiLU
|
312 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
313 |
+
if act_layer is not None and apply_act:
|
314 |
+
self.act = create_act_layer(act_layer)
|
315 |
+
else:
|
316 |
+
self.act = nn.Identity()
|
317 |
+
if group_size:
|
318 |
+
assert num_features % group_size == 0
|
319 |
+
self.groups = num_features // group_size
|
320 |
+
else:
|
321 |
+
self.groups = groups
|
322 |
+
self.eps = eps
|
323 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
324 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
325 |
+
self.reset_parameters()
|
326 |
+
|
327 |
+
def reset_parameters(self):
|
328 |
+
nn.init.ones_(self.weight)
|
329 |
+
nn.init.zeros_(self.bias)
|
330 |
+
|
331 |
+
def forward(self, x):
|
332 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
333 |
+
x_dtype = x.dtype
|
334 |
+
v_shape = (1, -1, 1, 1)
|
335 |
+
if self.apply_act:
|
336 |
+
x = self.act(x) / group_rms(x, self.groups, self.eps)
|
337 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
338 |
+
|
339 |
+
|
340 |
+
class EvoNorm2dS2a(EvoNorm2dS2):
|
341 |
+
def __init__(
|
342 |
+
self, num_features, groups=32, group_size=None,
|
343 |
+
apply_act=True, act_layer=None, eps=1e-3, **_):
|
344 |
+
super().__init__(
|
345 |
+
num_features, groups=groups, group_size=group_size, apply_act=apply_act, act_layer=act_layer, eps=eps)
|
346 |
+
|
347 |
+
def forward(self, x):
|
348 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
349 |
+
x_dtype = x.dtype
|
350 |
+
v_shape = (1, -1, 1, 1)
|
351 |
+
x = self.act(x) / group_rms(x, self.groups, self.eps)
|
352 |
+
return x * self.weight.view(v_shape).to(x_dtype) + self.bias.view(v_shape).to(x_dtype)
|
pytorch-image-models/timm/layers/fast_norm.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" 'Fast' Normalization Functions
|
2 |
+
|
3 |
+
For GroupNorm and LayerNorm these functions bypass typical AMP upcast to float32.
|
4 |
+
|
5 |
+
Additionally, for LayerNorm, the APEX fused LN is used if available (which also does not upcast)
|
6 |
+
|
7 |
+
Hacked together by / Copyright 2022 Ross Wightman
|
8 |
+
"""
|
9 |
+
from typing import List, Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
try:
|
15 |
+
from apex.normalization.fused_layer_norm import fused_layer_norm_affine
|
16 |
+
has_apex = True
|
17 |
+
except ImportError:
|
18 |
+
has_apex = False
|
19 |
+
|
20 |
+
try:
|
21 |
+
from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm
|
22 |
+
has_apex_rmsnorm = True
|
23 |
+
except ImportError:
|
24 |
+
has_apex_rmsnorm = False
|
25 |
+
|
26 |
+
|
27 |
+
# fast (ie lower precision LN) can be disabled with this flag if issues crop up
|
28 |
+
_USE_FAST_NORM = False # defaulting to False for now
|
29 |
+
|
30 |
+
|
31 |
+
def get_autocast_dtype(device: str = 'cuda'):
|
32 |
+
try:
|
33 |
+
return torch.get_autocast_dtype(device)
|
34 |
+
except (AttributeError, TypeError):
|
35 |
+
# dispatch to older device specific fns, only covering cuda/cpu devices here
|
36 |
+
if device == 'cpu':
|
37 |
+
return torch.get_autocast_cpu_dtype()
|
38 |
+
else:
|
39 |
+
assert device == 'cuda'
|
40 |
+
return torch.get_autocast_gpu_dtype()
|
41 |
+
|
42 |
+
|
43 |
+
def is_autocast_enabled(device: str = 'cuda'):
|
44 |
+
try:
|
45 |
+
return torch.is_autocast_enabled(device)
|
46 |
+
except TypeError:
|
47 |
+
# dispatch to older device specific fns, only covering cuda/cpu devices here
|
48 |
+
if device == 'cpu':
|
49 |
+
return torch.is_autocast_cpu_enabled()
|
50 |
+
else:
|
51 |
+
assert device == 'cuda'
|
52 |
+
return torch.is_autocast_enabled() # defaults cuda (only cuda on older pytorch)
|
53 |
+
|
54 |
+
|
55 |
+
def is_fast_norm():
|
56 |
+
return _USE_FAST_NORM
|
57 |
+
|
58 |
+
|
59 |
+
def set_fast_norm(enable=True):
|
60 |
+
global _USE_FAST_NORM
|
61 |
+
_USE_FAST_NORM = enable
|
62 |
+
|
63 |
+
|
64 |
+
def fast_group_norm(
|
65 |
+
x: torch.Tensor,
|
66 |
+
num_groups: int,
|
67 |
+
weight: Optional[torch.Tensor] = None,
|
68 |
+
bias: Optional[torch.Tensor] = None,
|
69 |
+
eps: float = 1e-5
|
70 |
+
) -> torch.Tensor:
|
71 |
+
if torch.jit.is_scripting():
|
72 |
+
# currently cannot use is_autocast_enabled within torchscript
|
73 |
+
return F.group_norm(x, num_groups, weight, bias, eps)
|
74 |
+
|
75 |
+
if is_autocast_enabled(x.device.type):
|
76 |
+
# normally native AMP casts GN inputs to float32
|
77 |
+
# here we use the low precision autocast dtype
|
78 |
+
# FIXME what to do re CPU autocast?
|
79 |
+
dt = get_autocast_dtype(x.device.type)
|
80 |
+
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None
|
81 |
+
|
82 |
+
with torch.amp.autocast(device_type=x.device.type, enabled=False):
|
83 |
+
return F.group_norm(x, num_groups, weight, bias, eps)
|
84 |
+
|
85 |
+
|
86 |
+
def fast_layer_norm(
|
87 |
+
x: torch.Tensor,
|
88 |
+
normalized_shape: List[int],
|
89 |
+
weight: Optional[torch.Tensor] = None,
|
90 |
+
bias: Optional[torch.Tensor] = None,
|
91 |
+
eps: float = 1e-5
|
92 |
+
) -> torch.Tensor:
|
93 |
+
if torch.jit.is_scripting():
|
94 |
+
# currently cannot use is_autocast_enabled within torchscript
|
95 |
+
return F.layer_norm(x, normalized_shape, weight, bias, eps)
|
96 |
+
|
97 |
+
if has_apex:
|
98 |
+
return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps)
|
99 |
+
|
100 |
+
if is_autocast_enabled(x.device.type):
|
101 |
+
# normally native AMP casts LN inputs to float32
|
102 |
+
# apex LN does not, this is behaving like Apex
|
103 |
+
dt = get_autocast_dtype(x.device.type)
|
104 |
+
# FIXME what to do re CPU autocast?
|
105 |
+
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None
|
106 |
+
|
107 |
+
with torch.amp.autocast(device_type=x.device.type, enabled=False):
|
108 |
+
return F.layer_norm(x, normalized_shape, weight, bias, eps)
|
109 |
+
|
110 |
+
|
111 |
+
def rms_norm(
|
112 |
+
x: torch.Tensor,
|
113 |
+
normalized_shape: List[int],
|
114 |
+
weight: Optional[torch.Tensor] = None,
|
115 |
+
eps: float = 1e-5,
|
116 |
+
):
|
117 |
+
norm_ndim = len(normalized_shape)
|
118 |
+
if torch.jit.is_scripting():
|
119 |
+
# ndim = len(x.shape)
|
120 |
+
# dims = list(range(ndim - norm_ndim, ndim)) # this doesn't work on pytorch <= 1.13.x
|
121 |
+
# NOTE -ve dims cause torchscript to crash in some cases, out of options to work around
|
122 |
+
assert norm_ndim == 1
|
123 |
+
v = torch.var(x, dim=-1).unsqueeze(-1) # ts crashes with -ve dim + keepdim=True
|
124 |
+
else:
|
125 |
+
dims = tuple(range(-1, -norm_ndim - 1, -1))
|
126 |
+
v = torch.var(x, dim=dims, keepdim=True)
|
127 |
+
x = x * torch.rsqrt(v + eps)
|
128 |
+
if weight is not None:
|
129 |
+
x = x * weight
|
130 |
+
return x
|
131 |
+
|
132 |
+
|
133 |
+
def fast_rms_norm(
|
134 |
+
x: torch.Tensor,
|
135 |
+
normalized_shape: List[int],
|
136 |
+
weight: Optional[torch.Tensor] = None,
|
137 |
+
eps: float = 1e-5,
|
138 |
+
) -> torch.Tensor:
|
139 |
+
if torch.jit.is_scripting():
|
140 |
+
# this must be by itself, cannot merge with has_apex_rmsnorm
|
141 |
+
return rms_norm(x, normalized_shape, weight, eps)
|
142 |
+
|
143 |
+
if has_apex_rmsnorm:
|
144 |
+
if weight is None:
|
145 |
+
return fused_rms_norm(x, normalized_shape, eps)
|
146 |
+
else:
|
147 |
+
return fused_rms_norm_affine(x, weight, normalized_shape, eps)
|
148 |
+
|
149 |
+
# fallback
|
150 |
+
return rms_norm(x, normalized_shape, weight, eps)
|
pytorch-image-models/timm/layers/filter_response_norm.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Filter Response Norm in PyTorch
|
2 |
+
|
3 |
+
Based on `Filter Response Normalization Layer` - https://arxiv.org/abs/1911.09737
|
4 |
+
|
5 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
6 |
+
"""
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from .create_act import create_act_layer
|
11 |
+
from .trace_utils import _assert
|
12 |
+
|
13 |
+
|
14 |
+
def inv_instance_rms(x, eps: float = 1e-5):
|
15 |
+
rms = x.square().float().mean(dim=(2, 3), keepdim=True).add(eps).rsqrt().to(x.dtype)
|
16 |
+
return rms.expand(x.shape)
|
17 |
+
|
18 |
+
|
19 |
+
class FilterResponseNormTlu2d(nn.Module):
|
20 |
+
def __init__(self, num_features, apply_act=True, eps=1e-5, rms=True, **_):
|
21 |
+
super(FilterResponseNormTlu2d, self).__init__()
|
22 |
+
self.apply_act = apply_act # apply activation (non-linearity)
|
23 |
+
self.rms = rms
|
24 |
+
self.eps = eps
|
25 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
26 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
27 |
+
self.tau = nn.Parameter(torch.zeros(num_features)) if apply_act else None
|
28 |
+
self.reset_parameters()
|
29 |
+
|
30 |
+
def reset_parameters(self):
|
31 |
+
nn.init.ones_(self.weight)
|
32 |
+
nn.init.zeros_(self.bias)
|
33 |
+
if self.tau is not None:
|
34 |
+
nn.init.zeros_(self.tau)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
38 |
+
x_dtype = x.dtype
|
39 |
+
v_shape = (1, -1, 1, 1)
|
40 |
+
x = x * inv_instance_rms(x, self.eps)
|
41 |
+
x = x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype)
|
42 |
+
return torch.maximum(x, self.tau.reshape(v_shape).to(dtype=x_dtype)) if self.tau is not None else x
|
43 |
+
|
44 |
+
|
45 |
+
class FilterResponseNormAct2d(nn.Module):
|
46 |
+
def __init__(self, num_features, apply_act=True, act_layer=nn.ReLU, inplace=None, rms=True, eps=1e-5, **_):
|
47 |
+
super(FilterResponseNormAct2d, self).__init__()
|
48 |
+
if act_layer is not None and apply_act:
|
49 |
+
self.act = create_act_layer(act_layer, inplace=inplace)
|
50 |
+
else:
|
51 |
+
self.act = nn.Identity()
|
52 |
+
self.rms = rms
|
53 |
+
self.eps = eps
|
54 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
55 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
56 |
+
self.reset_parameters()
|
57 |
+
|
58 |
+
def reset_parameters(self):
|
59 |
+
nn.init.ones_(self.weight)
|
60 |
+
nn.init.zeros_(self.bias)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
_assert(x.dim() == 4, 'expected 4D input')
|
64 |
+
x_dtype = x.dtype
|
65 |
+
v_shape = (1, -1, 1, 1)
|
66 |
+
x = x * inv_instance_rms(x, self.eps)
|
67 |
+
x = x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype)
|
68 |
+
return self.act(x)
|
pytorch-image-models/timm/layers/format.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class Format(str, Enum):
|
8 |
+
NCHW = 'NCHW'
|
9 |
+
NHWC = 'NHWC'
|
10 |
+
NCL = 'NCL'
|
11 |
+
NLC = 'NLC'
|
12 |
+
|
13 |
+
|
14 |
+
FormatT = Union[str, Format]
|
15 |
+
|
16 |
+
|
17 |
+
def get_spatial_dim(fmt: FormatT):
|
18 |
+
fmt = Format(fmt)
|
19 |
+
if fmt is Format.NLC:
|
20 |
+
dim = (1,)
|
21 |
+
elif fmt is Format.NCL:
|
22 |
+
dim = (2,)
|
23 |
+
elif fmt is Format.NHWC:
|
24 |
+
dim = (1, 2)
|
25 |
+
else:
|
26 |
+
dim = (2, 3)
|
27 |
+
return dim
|
28 |
+
|
29 |
+
|
30 |
+
def get_channel_dim(fmt: FormatT):
|
31 |
+
fmt = Format(fmt)
|
32 |
+
if fmt is Format.NHWC:
|
33 |
+
dim = 3
|
34 |
+
elif fmt is Format.NLC:
|
35 |
+
dim = 2
|
36 |
+
else:
|
37 |
+
dim = 1
|
38 |
+
return dim
|
39 |
+
|
40 |
+
|
41 |
+
def nchw_to(x: torch.Tensor, fmt: Format):
|
42 |
+
if fmt == Format.NHWC:
|
43 |
+
x = x.permute(0, 2, 3, 1)
|
44 |
+
elif fmt == Format.NLC:
|
45 |
+
x = x.flatten(2).transpose(1, 2)
|
46 |
+
elif fmt == Format.NCL:
|
47 |
+
x = x.flatten(2)
|
48 |
+
return x
|
49 |
+
|
50 |
+
|
51 |
+
def nhwc_to(x: torch.Tensor, fmt: Format):
|
52 |
+
if fmt == Format.NCHW:
|
53 |
+
x = x.permute(0, 3, 1, 2)
|
54 |
+
elif fmt == Format.NLC:
|
55 |
+
x = x.flatten(1, 2)
|
56 |
+
elif fmt == Format.NCL:
|
57 |
+
x = x.flatten(1, 2).transpose(1, 2)
|
58 |
+
return x
|
pytorch-image-models/timm/layers/gather_excite.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Gather-Excite Attention Block
|
2 |
+
|
3 |
+
Paper: `Gather-Excite: Exploiting Feature Context in CNNs` - https://arxiv.org/abs/1810.12348
|
4 |
+
|
5 |
+
Official code here, but it's only partial impl in Caffe: https://github.com/hujie-frank/GENet
|
6 |
+
|
7 |
+
I've tried to support all of the extent both w/ and w/o params. I don't believe I've seen another
|
8 |
+
impl that covers all of the cases.
|
9 |
+
|
10 |
+
NOTE: extent=0 + extra_params=False is equivalent to Squeeze-and-Excitation
|
11 |
+
|
12 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
13 |
+
"""
|
14 |
+
import math
|
15 |
+
|
16 |
+
from torch import nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
from .create_act import create_act_layer, get_act_layer
|
20 |
+
from .create_conv2d import create_conv2d
|
21 |
+
from .helpers import make_divisible
|
22 |
+
from .mlp import ConvMlp
|
23 |
+
|
24 |
+
|
25 |
+
class GatherExcite(nn.Module):
|
26 |
+
""" Gather-Excite Attention Module
|
27 |
+
"""
|
28 |
+
def __init__(
|
29 |
+
self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True,
|
30 |
+
rd_ratio=1./16, rd_channels=None, rd_divisor=1, add_maxpool=False,
|
31 |
+
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'):
|
32 |
+
super(GatherExcite, self).__init__()
|
33 |
+
self.add_maxpool = add_maxpool
|
34 |
+
act_layer = get_act_layer(act_layer)
|
35 |
+
self.extent = extent
|
36 |
+
if extra_params:
|
37 |
+
self.gather = nn.Sequential()
|
38 |
+
if extent == 0:
|
39 |
+
assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params'
|
40 |
+
self.gather.add_module(
|
41 |
+
'conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True))
|
42 |
+
if norm_layer:
|
43 |
+
self.gather.add_module(f'norm1', nn.BatchNorm2d(channels))
|
44 |
+
else:
|
45 |
+
assert extent % 2 == 0
|
46 |
+
num_conv = int(math.log2(extent))
|
47 |
+
for i in range(num_conv):
|
48 |
+
self.gather.add_module(
|
49 |
+
f'conv{i + 1}',
|
50 |
+
create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True))
|
51 |
+
if norm_layer:
|
52 |
+
self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels))
|
53 |
+
if i != num_conv - 1:
|
54 |
+
self.gather.add_module(f'act{i + 1}', act_layer(inplace=True))
|
55 |
+
else:
|
56 |
+
self.gather = None
|
57 |
+
if self.extent == 0:
|
58 |
+
self.gk = 0
|
59 |
+
self.gs = 0
|
60 |
+
else:
|
61 |
+
assert extent % 2 == 0
|
62 |
+
self.gk = self.extent * 2 - 1
|
63 |
+
self.gs = self.extent
|
64 |
+
|
65 |
+
if not rd_channels:
|
66 |
+
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.)
|
67 |
+
self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity()
|
68 |
+
self.gate = create_act_layer(gate_layer)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
size = x.shape[-2:]
|
72 |
+
if self.gather is not None:
|
73 |
+
x_ge = self.gather(x)
|
74 |
+
else:
|
75 |
+
if self.extent == 0:
|
76 |
+
# global extent
|
77 |
+
x_ge = x.mean(dim=(2, 3), keepdims=True)
|
78 |
+
if self.add_maxpool:
|
79 |
+
# experimental codepath, may remove or change
|
80 |
+
x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True)
|
81 |
+
else:
|
82 |
+
x_ge = F.avg_pool2d(
|
83 |
+
x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False)
|
84 |
+
if self.add_maxpool:
|
85 |
+
# experimental codepath, may remove or change
|
86 |
+
x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2)
|
87 |
+
x_ge = self.mlp(x_ge)
|
88 |
+
if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1:
|
89 |
+
x_ge = F.interpolate(x_ge, size=size)
|
90 |
+
return x * self.gate(x_ge)
|
pytorch-image-models/timm/layers/global_context.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Global Context Attention Block
|
2 |
+
|
3 |
+
Paper: `GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond`
|
4 |
+
- https://arxiv.org/abs/1904.11492
|
5 |
+
|
6 |
+
Official code consulted as reference: https://github.com/xvjiarui/GCNet
|
7 |
+
|
8 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
9 |
+
"""
|
10 |
+
from torch import nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from .create_act import create_act_layer, get_act_layer
|
14 |
+
from .helpers import make_divisible
|
15 |
+
from .mlp import ConvMlp
|
16 |
+
from .norm import LayerNorm2d
|
17 |
+
|
18 |
+
|
19 |
+
class GlobalContext(nn.Module):
|
20 |
+
|
21 |
+
def __init__(self, channels, use_attn=True, fuse_add=False, fuse_scale=True, init_last_zero=False,
|
22 |
+
rd_ratio=1./8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'):
|
23 |
+
super(GlobalContext, self).__init__()
|
24 |
+
act_layer = get_act_layer(act_layer)
|
25 |
+
|
26 |
+
self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None
|
27 |
+
|
28 |
+
if rd_channels is None:
|
29 |
+
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.)
|
30 |
+
if fuse_add:
|
31 |
+
self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d)
|
32 |
+
else:
|
33 |
+
self.mlp_add = None
|
34 |
+
if fuse_scale:
|
35 |
+
self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d)
|
36 |
+
else:
|
37 |
+
self.mlp_scale = None
|
38 |
+
|
39 |
+
self.gate = create_act_layer(gate_layer)
|
40 |
+
self.init_last_zero = init_last_zero
|
41 |
+
self.reset_parameters()
|
42 |
+
|
43 |
+
def reset_parameters(self):
|
44 |
+
if self.conv_attn is not None:
|
45 |
+
nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu')
|
46 |
+
if self.mlp_add is not None:
|
47 |
+
nn.init.zeros_(self.mlp_add.fc2.weight)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
B, C, H, W = x.shape
|
51 |
+
|
52 |
+
if self.conv_attn is not None:
|
53 |
+
attn = self.conv_attn(x).reshape(B, 1, H * W) # (B, 1, H * W)
|
54 |
+
attn = F.softmax(attn, dim=-1).unsqueeze(3) # (B, 1, H * W, 1)
|
55 |
+
context = x.reshape(B, C, H * W).unsqueeze(1) @ attn
|
56 |
+
context = context.view(B, C, 1, 1)
|
57 |
+
else:
|
58 |
+
context = x.mean(dim=(2, 3), keepdim=True)
|
59 |
+
|
60 |
+
if self.mlp_scale is not None:
|
61 |
+
mlp_x = self.mlp_scale(context)
|
62 |
+
x = x * self.gate(mlp_x)
|
63 |
+
if self.mlp_add is not None:
|
64 |
+
mlp_x = self.mlp_add(context)
|
65 |
+
x = x + mlp_x
|
66 |
+
|
67 |
+
return x
|
pytorch-image-models/timm/layers/halo_attn.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Halo Self Attention
|
2 |
+
|
3 |
+
Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones`
|
4 |
+
- https://arxiv.org/abs/2103.12731
|
5 |
+
|
6 |
+
@misc{2103.12731,
|
7 |
+
Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and
|
8 |
+
Jonathon Shlens},
|
9 |
+
Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones},
|
10 |
+
Year = {2021},
|
11 |
+
}
|
12 |
+
|
13 |
+
Status:
|
14 |
+
This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me.
|
15 |
+
The attention mechanism works but it's slow as implemented.
|
16 |
+
|
17 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
18 |
+
"""
|
19 |
+
from typing import List
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
from .helpers import make_divisible
|
26 |
+
from .weight_init import trunc_normal_
|
27 |
+
from .trace_utils import _assert
|
28 |
+
|
29 |
+
|
30 |
+
def rel_logits_1d(q, rel_k, permute_mask: List[int]):
|
31 |
+
""" Compute relative logits along one dimension
|
32 |
+
|
33 |
+
As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
|
34 |
+
Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925
|
35 |
+
|
36 |
+
Args:
|
37 |
+
q: (batch, height, width, dim)
|
38 |
+
rel_k: (2 * window - 1, dim)
|
39 |
+
permute_mask: permute output dim according to this
|
40 |
+
"""
|
41 |
+
B, H, W, dim = q.shape
|
42 |
+
rel_size = rel_k.shape[0]
|
43 |
+
win_size = (rel_size + 1) // 2
|
44 |
+
|
45 |
+
x = (q @ rel_k.transpose(-1, -2))
|
46 |
+
x = x.reshape(-1, W, rel_size)
|
47 |
+
|
48 |
+
# pad to shift from relative to absolute indexing
|
49 |
+
x_pad = F.pad(x, [0, 1]).flatten(1)
|
50 |
+
x_pad = F.pad(x_pad, [0, rel_size - W])
|
51 |
+
|
52 |
+
# reshape and slice out the padded elements
|
53 |
+
x_pad = x_pad.reshape(-1, W + 1, rel_size)
|
54 |
+
x = x_pad[:, :W, win_size - 1:]
|
55 |
+
|
56 |
+
# reshape and tile
|
57 |
+
x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1)
|
58 |
+
return x.permute(permute_mask)
|
59 |
+
|
60 |
+
|
61 |
+
class PosEmbedRel(nn.Module):
|
62 |
+
""" Relative Position Embedding
|
63 |
+
As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
|
64 |
+
Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925
|
65 |
+
|
66 |
+
"""
|
67 |
+
def __init__(self, block_size, win_size, dim_head, scale):
|
68 |
+
"""
|
69 |
+
Args:
|
70 |
+
block_size (int): block size
|
71 |
+
win_size (int): neighbourhood window size
|
72 |
+
dim_head (int): attention head dim
|
73 |
+
scale (float): scale factor (for init)
|
74 |
+
"""
|
75 |
+
super().__init__()
|
76 |
+
self.block_size = block_size
|
77 |
+
self.dim_head = dim_head
|
78 |
+
self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale)
|
79 |
+
self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale)
|
80 |
+
|
81 |
+
def forward(self, q):
|
82 |
+
B, BB, HW, _ = q.shape
|
83 |
+
|
84 |
+
# relative logits in width dimension.
|
85 |
+
q = q.reshape(-1, self.block_size, self.block_size, self.dim_head)
|
86 |
+
rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4))
|
87 |
+
|
88 |
+
# relative logits in height dimension.
|
89 |
+
q = q.transpose(1, 2)
|
90 |
+
rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2))
|
91 |
+
|
92 |
+
rel_logits = rel_logits_h + rel_logits_w
|
93 |
+
rel_logits = rel_logits.reshape(B, BB, HW, -1)
|
94 |
+
return rel_logits
|
95 |
+
|
96 |
+
|
97 |
+
class HaloAttn(nn.Module):
|
98 |
+
""" Halo Attention
|
99 |
+
|
100 |
+
Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones`
|
101 |
+
- https://arxiv.org/abs/2103.12731
|
102 |
+
|
103 |
+
The internal dimensions of the attention module are controlled by the interaction of several arguments.
|
104 |
+
* the output dimension of the module is specified by dim_out, which falls back to input dim if not set
|
105 |
+
* the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim
|
106 |
+
* the query and key (qk) dimensions are determined by
|
107 |
+
* num_heads * dim_head if dim_head is not None
|
108 |
+
* num_heads * (dim_out * attn_ratio // num_heads) if dim_head is None
|
109 |
+
* as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not used
|
110 |
+
|
111 |
+
Args:
|
112 |
+
dim (int): input dimension to the module
|
113 |
+
dim_out (int): output dimension of the module, same as dim if not set
|
114 |
+
feat_size (Tuple[int, int]): size of input feature_map (not used, for arg compat with bottle/lambda)
|
115 |
+
stride: output stride of the module, query downscaled if > 1 (default: 1).
|
116 |
+
num_heads: parallel attention heads (default: 8).
|
117 |
+
dim_head: dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set
|
118 |
+
block_size (int): size of blocks. (default: 8)
|
119 |
+
halo_size (int): size of halo overlap. (default: 3)
|
120 |
+
qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0)
|
121 |
+
qkv_bias (bool) : add bias to q, k, and v projections
|
122 |
+
avg_down (bool): use average pool downsample instead of strided query blocks
|
123 |
+
scale_pos_embed (bool): scale the position embedding as well as Q @ K
|
124 |
+
"""
|
125 |
+
def __init__(
|
126 |
+
self, dim, dim_out=None, feat_size=None, stride=1, num_heads=8, dim_head=None, block_size=8, halo_size=3,
|
127 |
+
qk_ratio=1.0, qkv_bias=False, avg_down=False, scale_pos_embed=False):
|
128 |
+
super().__init__()
|
129 |
+
dim_out = dim_out or dim
|
130 |
+
assert dim_out % num_heads == 0
|
131 |
+
assert stride in (1, 2)
|
132 |
+
self.num_heads = num_heads
|
133 |
+
self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads
|
134 |
+
self.dim_head_v = dim_out // self.num_heads
|
135 |
+
self.dim_out_qk = num_heads * self.dim_head_qk
|
136 |
+
self.dim_out_v = num_heads * self.dim_head_v
|
137 |
+
self.scale = self.dim_head_qk ** -0.5
|
138 |
+
self.scale_pos_embed = scale_pos_embed
|
139 |
+
self.block_size = self.block_size_ds = block_size
|
140 |
+
self.halo_size = halo_size
|
141 |
+
self.win_size = block_size + halo_size * 2 # neighbourhood window size
|
142 |
+
self.block_stride = 1
|
143 |
+
use_avg_pool = False
|
144 |
+
if stride > 1:
|
145 |
+
use_avg_pool = avg_down or block_size % stride != 0
|
146 |
+
self.block_stride = 1 if use_avg_pool else stride
|
147 |
+
self.block_size_ds = self.block_size // self.block_stride
|
148 |
+
|
149 |
+
# FIXME not clear if this stride behaviour is what the paper intended
|
150 |
+
# Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving
|
151 |
+
# data in unfolded block form. I haven't wrapped my head around how that'd look.
|
152 |
+
self.q = nn.Conv2d(dim, self.dim_out_qk, 1, stride=self.block_stride, bias=qkv_bias)
|
153 |
+
self.kv = nn.Conv2d(dim, self.dim_out_qk + self.dim_out_v, 1, bias=qkv_bias)
|
154 |
+
|
155 |
+
self.pos_embed = PosEmbedRel(
|
156 |
+
block_size=self.block_size_ds, win_size=self.win_size, dim_head=self.dim_head_qk, scale=self.scale)
|
157 |
+
|
158 |
+
self.pool = nn.AvgPool2d(2, 2) if use_avg_pool else nn.Identity()
|
159 |
+
|
160 |
+
self.reset_parameters()
|
161 |
+
|
162 |
+
def reset_parameters(self):
|
163 |
+
std = self.q.weight.shape[1] ** -0.5 # fan-in
|
164 |
+
trunc_normal_(self.q.weight, std=std)
|
165 |
+
trunc_normal_(self.kv.weight, std=std)
|
166 |
+
trunc_normal_(self.pos_embed.height_rel, std=self.scale)
|
167 |
+
trunc_normal_(self.pos_embed.width_rel, std=self.scale)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
B, C, H, W = x.shape
|
171 |
+
_assert(H % self.block_size == 0, '')
|
172 |
+
_assert(W % self.block_size == 0, '')
|
173 |
+
num_h_blocks = H // self.block_size
|
174 |
+
num_w_blocks = W // self.block_size
|
175 |
+
num_blocks = num_h_blocks * num_w_blocks
|
176 |
+
|
177 |
+
q = self.q(x)
|
178 |
+
# unfold
|
179 |
+
q = q.reshape(
|
180 |
+
-1, self.dim_head_qk,
|
181 |
+
num_h_blocks, self.block_size_ds, num_w_blocks, self.block_size_ds).permute(0, 1, 3, 5, 2, 4)
|
182 |
+
# B, num_heads * dim_head * block_size ** 2, num_blocks
|
183 |
+
q = q.reshape(B * self.num_heads, self.dim_head_qk, -1, num_blocks).transpose(1, 3)
|
184 |
+
# B * num_heads, num_blocks, block_size ** 2, dim_head
|
185 |
+
|
186 |
+
kv = self.kv(x)
|
187 |
+
# Generate overlapping windows for kv. This approach is good for GPU and CPU. However, unfold() is not
|
188 |
+
# lowered for PyTorch XLA so it will be very slow. See code at bottom of file for XLA friendly approach.
|
189 |
+
# FIXME figure out how to switch impl between this and conv2d if XLA being used.
|
190 |
+
kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size])
|
191 |
+
kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape(
|
192 |
+
B * self.num_heads, self.dim_head_qk + self.dim_head_v, num_blocks, -1).permute(0, 2, 3, 1)
|
193 |
+
k, v = torch.split(kv, [self.dim_head_qk, self.dim_head_v], dim=-1)
|
194 |
+
# B * num_heads, num_blocks, win_size ** 2, dim_head_qk or dim_head_v
|
195 |
+
|
196 |
+
if self.scale_pos_embed:
|
197 |
+
attn = (q @ k.transpose(-1, -2) + self.pos_embed(q)) * self.scale
|
198 |
+
else:
|
199 |
+
attn = (q @ k.transpose(-1, -2)) * self.scale + self.pos_embed(q)
|
200 |
+
# B * num_heads, num_blocks, block_size ** 2, win_size ** 2
|
201 |
+
attn = attn.softmax(dim=-1)
|
202 |
+
|
203 |
+
out = (attn @ v).transpose(1, 3) # B * num_heads, dim_head_v, block_size ** 2, num_blocks
|
204 |
+
# fold
|
205 |
+
out = out.reshape(-1, self.block_size_ds, self.block_size_ds, num_h_blocks, num_w_blocks)
|
206 |
+
out = out.permute(0, 3, 1, 4, 2).contiguous().view(
|
207 |
+
B, self.dim_out_v, H // self.block_stride, W // self.block_stride)
|
208 |
+
# B, dim_out, H // block_stride, W // block_stride
|
209 |
+
out = self.pool(out)
|
210 |
+
return out
|
211 |
+
|
212 |
+
|
213 |
+
""" Three alternatives for overlapping windows.
|
214 |
+
|
215 |
+
`.unfold().unfold()` is same speed as stride tricks with similar clarity as F.unfold()
|
216 |
+
|
217 |
+
if is_xla:
|
218 |
+
# This code achieves haloing on PyTorch XLA with reasonable runtime trade-off, it is
|
219 |
+
# EXTREMELY slow for backward on a GPU though so I need a way of selecting based on environment.
|
220 |
+
WW = self.win_size ** 2
|
221 |
+
pw = torch.eye(WW, dtype=x.dtype, device=x.device).reshape(WW, 1, self.win_size, self.win_size)
|
222 |
+
kv = F.conv2d(kv.reshape(-1, 1, H, W), pw, stride=self.block_size, padding=self.halo_size)
|
223 |
+
elif self.stride_tricks:
|
224 |
+
kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous()
|
225 |
+
kv = kv.as_strided((
|
226 |
+
B, self.dim_out_qk + self.dim_out_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks),
|
227 |
+
stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size))
|
228 |
+
else:
|
229 |
+
kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size)
|
230 |
+
|
231 |
+
kv = kv.reshape(
|
232 |
+
B * self.num_heads, self.dim_head_qk + self.dim_head_v, -1, num_blocks).transpose(1, 3)
|
233 |
+
"""
|
pytorch-image-models/timm/layers/hybrid_embed.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Image to Patch Hybird Embedding Layer
|
2 |
+
|
3 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
4 |
+
"""
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from .format import Format, nchw_to
|
14 |
+
from .helpers import to_2tuple
|
15 |
+
from .patch_embed import resample_patch_embed
|
16 |
+
|
17 |
+
|
18 |
+
_logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class HybridEmbed(nn.Module):
|
22 |
+
""" CNN Feature Map Embedding
|
23 |
+
Extract feature map from CNN, flatten, project to embedding dim.
|
24 |
+
"""
|
25 |
+
output_fmt: Format
|
26 |
+
dynamic_img_pad: torch.jit.Final[bool]
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
backbone: nn.Module,
|
31 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
32 |
+
patch_size: Union[int, Tuple[int, int]] = 1,
|
33 |
+
feature_size: Optional[Union[int, Tuple[int, int]]] = None,
|
34 |
+
feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
|
35 |
+
in_chans: int = 3,
|
36 |
+
embed_dim: int = 768,
|
37 |
+
bias: bool = True,
|
38 |
+
proj: bool = True,
|
39 |
+
flatten: bool = True,
|
40 |
+
output_fmt: Optional[str] = None,
|
41 |
+
strict_img_size: bool = True,
|
42 |
+
dynamic_img_pad: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
assert isinstance(backbone, nn.Module)
|
46 |
+
self.backbone = backbone
|
47 |
+
self.in_chans = in_chans
|
48 |
+
(
|
49 |
+
self.img_size,
|
50 |
+
self.patch_size,
|
51 |
+
self.feature_size,
|
52 |
+
self.feature_ratio,
|
53 |
+
self.feature_dim,
|
54 |
+
self.grid_size,
|
55 |
+
self.num_patches,
|
56 |
+
) = self._init_backbone(
|
57 |
+
img_size=img_size,
|
58 |
+
patch_size=patch_size,
|
59 |
+
feature_size=feature_size,
|
60 |
+
feature_ratio=feature_ratio,
|
61 |
+
)
|
62 |
+
|
63 |
+
if output_fmt is not None:
|
64 |
+
self.flatten = False
|
65 |
+
self.output_fmt = Format(output_fmt)
|
66 |
+
else:
|
67 |
+
# flatten spatial dim and transpose to channels last, kept for bwd compat
|
68 |
+
self.flatten = flatten
|
69 |
+
self.output_fmt = Format.NCHW
|
70 |
+
self.strict_img_size = strict_img_size
|
71 |
+
self.dynamic_img_pad = dynamic_img_pad
|
72 |
+
if not dynamic_img_pad:
|
73 |
+
assert self.feature_size[0] % self.patch_size[0] == 0 and self.feature_size[1] % self.patch_size[1] == 0
|
74 |
+
|
75 |
+
if proj:
|
76 |
+
self.proj = nn.Conv2d(
|
77 |
+
self.feature_dim,
|
78 |
+
embed_dim,
|
79 |
+
kernel_size=patch_size,
|
80 |
+
stride=patch_size,
|
81 |
+
bias=bias,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
assert self.feature_dim == embed_dim, \
|
85 |
+
f'The feature dim ({self.feature_dim} must match embed dim ({embed_dim}) when projection disabled.'
|
86 |
+
self.proj = nn.Identity()
|
87 |
+
|
88 |
+
def _init_backbone(
|
89 |
+
self,
|
90 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
91 |
+
patch_size: Union[int, Tuple[int, int]] = 1,
|
92 |
+
feature_size: Optional[Union[int, Tuple[int, int]]] = None,
|
93 |
+
feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
|
94 |
+
feature_dim: Optional[int] = None,
|
95 |
+
):
|
96 |
+
img_size = to_2tuple(img_size)
|
97 |
+
patch_size = to_2tuple(patch_size)
|
98 |
+
if feature_size is None:
|
99 |
+
with torch.no_grad():
|
100 |
+
# NOTE Most reliable way of determining output dims is to run forward pass
|
101 |
+
training = self.backbone.training
|
102 |
+
if training:
|
103 |
+
self.backbone.eval()
|
104 |
+
o = self.backbone(torch.zeros(1, self.in_chans, img_size[0], img_size[1]))
|
105 |
+
if isinstance(o, (list, tuple)):
|
106 |
+
o = o[-1] # last feature if backbone outputs list/tuple of features
|
107 |
+
feature_size = o.shape[-2:]
|
108 |
+
feature_dim = o.shape[1]
|
109 |
+
self.backbone.train(training)
|
110 |
+
feature_ratio = tuple([s // f for s, f in zip(img_size, feature_size)])
|
111 |
+
else:
|
112 |
+
feature_size = to_2tuple(feature_size)
|
113 |
+
feature_ratio = to_2tuple(feature_ratio or 16)
|
114 |
+
if feature_dim is None:
|
115 |
+
if hasattr(self.backbone, 'feature_info'):
|
116 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
117 |
+
else:
|
118 |
+
feature_dim = self.backbone.num_features
|
119 |
+
grid_size = tuple([f // p for f, p in zip(feature_size, patch_size)])
|
120 |
+
num_patches = grid_size[0] * grid_size[1]
|
121 |
+
return img_size, patch_size, feature_size, feature_ratio, feature_dim, grid_size, num_patches
|
122 |
+
|
123 |
+
def set_input_size(
|
124 |
+
self,
|
125 |
+
img_size: Optional[Union[int, Tuple[int, int]]] = None,
|
126 |
+
patch_size: Optional[Union[int, Tuple[int, int]]] = None,
|
127 |
+
feature_size: Optional[Union[int, Tuple[int, int]]] = None,
|
128 |
+
feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
|
129 |
+
feature_dim: Optional[int] = None,
|
130 |
+
):
|
131 |
+
assert img_size is not None or patch_size is not None
|
132 |
+
img_size = img_size or self.img_size
|
133 |
+
new_patch_size = None
|
134 |
+
if patch_size is not None:
|
135 |
+
new_patch_size = to_2tuple(patch_size)
|
136 |
+
if new_patch_size is not None and new_patch_size != self.patch_size:
|
137 |
+
assert isinstance(self.proj, nn.Conv2d), 'HybridEmbed must have a projection layer to change patch size.'
|
138 |
+
with torch.no_grad():
|
139 |
+
new_proj = nn.Conv2d(
|
140 |
+
self.proj.in_channels,
|
141 |
+
self.proj.out_channels,
|
142 |
+
kernel_size=new_patch_size,
|
143 |
+
stride=new_patch_size,
|
144 |
+
bias=self.proj.bias is not None,
|
145 |
+
)
|
146 |
+
new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True))
|
147 |
+
if self.proj.bias is not None:
|
148 |
+
new_proj.bias.copy_(self.proj.bias)
|
149 |
+
self.proj = new_proj
|
150 |
+
patch_size = new_patch_size
|
151 |
+
patch_size = patch_size or self.patch_size
|
152 |
+
|
153 |
+
if img_size != self.img_size or patch_size != self.patch_size:
|
154 |
+
(
|
155 |
+
self.img_size,
|
156 |
+
self.patch_size,
|
157 |
+
self.feature_size,
|
158 |
+
self.feature_ratio,
|
159 |
+
self.feature_dim,
|
160 |
+
self.grid_size,
|
161 |
+
self.num_patches,
|
162 |
+
) = self._init_backbone(
|
163 |
+
img_size=img_size,
|
164 |
+
patch_size=patch_size,
|
165 |
+
feature_size=feature_size,
|
166 |
+
feature_ratio=feature_ratio,
|
167 |
+
feature_dim=feature_dim,
|
168 |
+
)
|
169 |
+
|
170 |
+
def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]:
|
171 |
+
total_reduction = (
|
172 |
+
self.feature_ratio[0] * self.patch_size[0],
|
173 |
+
self.feature_ratio[1] * self.patch_size[1]
|
174 |
+
)
|
175 |
+
if as_scalar:
|
176 |
+
return max(total_reduction)
|
177 |
+
else:
|
178 |
+
return total_reduction
|
179 |
+
|
180 |
+
def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]:
|
181 |
+
""" Get feature grid size taking account dynamic padding and backbone network feat reduction
|
182 |
+
"""
|
183 |
+
feat_size = (img_size[0] // self.feature_ratio[0], img_size[1] // self.feature_ratio[1])
|
184 |
+
if self.dynamic_img_pad:
|
185 |
+
return math.ceil(feat_size[0] / self.patch_size[0]), math.ceil(feat_size[1] / self.patch_size[1])
|
186 |
+
else:
|
187 |
+
return feat_size[0] // self.patch_size[0], feat_size[1] // self.patch_size[1]
|
188 |
+
|
189 |
+
@torch.jit.ignore
|
190 |
+
def set_grad_checkpointing(self, enable: bool = True):
|
191 |
+
if hasattr(self.backbone, 'set_grad_checkpointing'):
|
192 |
+
self.backbone.set_grad_checkpointing(enable=enable)
|
193 |
+
elif hasattr(self.backbone, 'grad_checkpointing'):
|
194 |
+
self.backbone.grad_checkpointing = enable
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
x = self.backbone(x)
|
198 |
+
if isinstance(x, (list, tuple)):
|
199 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
200 |
+
_, _, H, W = x.shape
|
201 |
+
if self.dynamic_img_pad:
|
202 |
+
pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
|
203 |
+
pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
|
204 |
+
x = F.pad(x, (0, pad_w, 0, pad_h))
|
205 |
+
x = self.proj(x)
|
206 |
+
if self.flatten:
|
207 |
+
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
|
208 |
+
elif self.output_fmt != Format.NCHW:
|
209 |
+
x = nchw_to(x, self.output_fmt)
|
210 |
+
return x
|
211 |
+
|
212 |
+
|
213 |
+
class HybridEmbedWithSize(HybridEmbed):
|
214 |
+
""" CNN Feature Map Embedding
|
215 |
+
Extract feature map from CNN, flatten, project to embedding dim.
|
216 |
+
"""
|
217 |
+
def __init__(
|
218 |
+
self,
|
219 |
+
backbone: nn.Module,
|
220 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
221 |
+
patch_size: Union[int, Tuple[int, int]] = 1,
|
222 |
+
feature_size: Optional[Union[int, Tuple[int, int]]] = None,
|
223 |
+
feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
|
224 |
+
in_chans: int = 3,
|
225 |
+
embed_dim: int = 768,
|
226 |
+
bias=True,
|
227 |
+
proj=True,
|
228 |
+
):
|
229 |
+
super().__init__(
|
230 |
+
backbone=backbone,
|
231 |
+
img_size=img_size,
|
232 |
+
patch_size=patch_size,
|
233 |
+
feature_size=feature_size,
|
234 |
+
feature_ratio=feature_ratio,
|
235 |
+
in_chans=in_chans,
|
236 |
+
embed_dim=embed_dim,
|
237 |
+
bias=bias,
|
238 |
+
proj=proj,
|
239 |
+
)
|
240 |
+
|
241 |
+
@torch.jit.ignore
|
242 |
+
def set_grad_checkpointing(self, enable: bool = True):
|
243 |
+
if hasattr(self.backbone, 'set_grad_checkpointing'):
|
244 |
+
self.backbone.set_grad_checkpointing(enable=enable)
|
245 |
+
elif hasattr(self.backbone, 'grad_checkpointing'):
|
246 |
+
self.backbone.grad_checkpointing = enable
|
247 |
+
|
248 |
+
def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
|
249 |
+
x = self.backbone(x)
|
250 |
+
if isinstance(x, (list, tuple)):
|
251 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
252 |
+
x = self.proj(x)
|
253 |
+
return x.flatten(2).transpose(1, 2), x.shape[-2:]
|
pytorch-image-models/timm/layers/inplace_abn.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn as nn
|
3 |
+
|
4 |
+
try:
|
5 |
+
from inplace_abn.functions import inplace_abn, inplace_abn_sync
|
6 |
+
has_iabn = True
|
7 |
+
except ImportError:
|
8 |
+
has_iabn = False
|
9 |
+
|
10 |
+
def inplace_abn(x, weight, bias, running_mean, running_var,
|
11 |
+
training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01):
|
12 |
+
raise ImportError(
|
13 |
+
"Please install InplaceABN:'pip install git+https://github.com/mapillary/[email protected]'")
|
14 |
+
|
15 |
+
def inplace_abn_sync(**kwargs):
|
16 |
+
inplace_abn(**kwargs)
|
17 |
+
|
18 |
+
|
19 |
+
class InplaceAbn(nn.Module):
|
20 |
+
"""Activated Batch Normalization
|
21 |
+
|
22 |
+
This gathers a BatchNorm and an activation function in a single module
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
num_features : int
|
27 |
+
Number of feature channels in the input and output.
|
28 |
+
eps : float
|
29 |
+
Small constant to prevent numerical issues.
|
30 |
+
momentum : float
|
31 |
+
Momentum factor applied to compute running statistics.
|
32 |
+
affine : bool
|
33 |
+
If `True` apply learned scale and shift transformation after normalization.
|
34 |
+
act_layer : str or nn.Module type
|
35 |
+
Name or type of the activation functions, one of: `leaky_relu`, `elu`
|
36 |
+
act_param : float
|
37 |
+
Negative slope for the `leaky_relu` activation.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True,
|
41 |
+
act_layer="leaky_relu", act_param=0.01, drop_layer=None):
|
42 |
+
super(InplaceAbn, self).__init__()
|
43 |
+
self.num_features = num_features
|
44 |
+
self.affine = affine
|
45 |
+
self.eps = eps
|
46 |
+
self.momentum = momentum
|
47 |
+
if apply_act:
|
48 |
+
if isinstance(act_layer, str):
|
49 |
+
assert act_layer in ('leaky_relu', 'elu', 'identity', '')
|
50 |
+
self.act_name = act_layer if act_layer else 'identity'
|
51 |
+
else:
|
52 |
+
# convert act layer passed as type to string
|
53 |
+
if act_layer == nn.ELU:
|
54 |
+
self.act_name = 'elu'
|
55 |
+
elif act_layer == nn.LeakyReLU:
|
56 |
+
self.act_name = 'leaky_relu'
|
57 |
+
elif act_layer is None or act_layer == nn.Identity:
|
58 |
+
self.act_name = 'identity'
|
59 |
+
else:
|
60 |
+
assert False, f'Invalid act layer {act_layer.__name__} for IABN'
|
61 |
+
else:
|
62 |
+
self.act_name = 'identity'
|
63 |
+
self.act_param = act_param
|
64 |
+
if self.affine:
|
65 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
66 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
67 |
+
else:
|
68 |
+
self.register_parameter('weight', None)
|
69 |
+
self.register_parameter('bias', None)
|
70 |
+
self.register_buffer('running_mean', torch.zeros(num_features))
|
71 |
+
self.register_buffer('running_var', torch.ones(num_features))
|
72 |
+
self.reset_parameters()
|
73 |
+
|
74 |
+
def reset_parameters(self):
|
75 |
+
nn.init.constant_(self.running_mean, 0)
|
76 |
+
nn.init.constant_(self.running_var, 1)
|
77 |
+
if self.affine:
|
78 |
+
nn.init.constant_(self.weight, 1)
|
79 |
+
nn.init.constant_(self.bias, 0)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
output = inplace_abn(
|
83 |
+
x, self.weight, self.bias, self.running_mean, self.running_var,
|
84 |
+
self.training, self.momentum, self.eps, self.act_name, self.act_param)
|
85 |
+
if isinstance(output, tuple):
|
86 |
+
output = output[0]
|
87 |
+
return output
|
pytorch-image-models/timm/layers/lambda_layer.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Lambda Layer
|
2 |
+
|
3 |
+
Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention`
|
4 |
+
- https://arxiv.org/abs/2102.08602
|
5 |
+
|
6 |
+
@misc{2102.08602,
|
7 |
+
Author = {Irwan Bello},
|
8 |
+
Title = {LambdaNetworks: Modeling Long-Range Interactions Without Attention},
|
9 |
+
Year = {2021},
|
10 |
+
}
|
11 |
+
|
12 |
+
Status:
|
13 |
+
This impl is a WIP. Code snippets in the paper were used as reference but
|
14 |
+
good chance some details are missing/wrong.
|
15 |
+
|
16 |
+
I've only implemented local lambda conv based pos embeddings.
|
17 |
+
|
18 |
+
For a PyTorch impl that includes other embedding options checkout
|
19 |
+
https://github.com/lucidrains/lambda-networks
|
20 |
+
|
21 |
+
Hacked together by / Copyright 2021 Ross Wightman
|
22 |
+
"""
|
23 |
+
import torch
|
24 |
+
from torch import nn
|
25 |
+
import torch.nn.functional as F
|
26 |
+
|
27 |
+
from .grid import ndgrid
|
28 |
+
from .helpers import to_2tuple, make_divisible
|
29 |
+
from .weight_init import trunc_normal_
|
30 |
+
|
31 |
+
|
32 |
+
def rel_pos_indices(size):
|
33 |
+
size = to_2tuple(size)
|
34 |
+
pos = torch.stack(ndgrid(torch.arange(size[0]), torch.arange(size[1]))).flatten(1)
|
35 |
+
rel_pos = pos[:, None, :] - pos[:, :, None]
|
36 |
+
rel_pos[0] += size[0] - 1
|
37 |
+
rel_pos[1] += size[1] - 1
|
38 |
+
return rel_pos # 2, H * W, H * W
|
39 |
+
|
40 |
+
|
41 |
+
class LambdaLayer(nn.Module):
|
42 |
+
"""Lambda Layer
|
43 |
+
|
44 |
+
Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention`
|
45 |
+
- https://arxiv.org/abs/2102.08602
|
46 |
+
|
47 |
+
NOTE: intra-depth parameter 'u' is fixed at 1. It did not appear worth the complexity to add.
|
48 |
+
|
49 |
+
The internal dimensions of the lambda module are controlled via the interaction of several arguments.
|
50 |
+
* the output dimension of the module is specified by dim_out, which falls back to input dim if not set
|
51 |
+
* the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim
|
52 |
+
* the query (q) and key (k) dimension are determined by
|
53 |
+
* dim_head = (dim_out * attn_ratio // num_heads) if dim_head is None
|
54 |
+
* q = num_heads * dim_head, k = dim_head
|
55 |
+
* as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not set
|
56 |
+
|
57 |
+
Args:
|
58 |
+
dim (int): input dimension to the module
|
59 |
+
dim_out (int): output dimension of the module, same as dim if not set
|
60 |
+
feat_size (Tuple[int, int]): size of input feature_map for relative pos variant H, W
|
61 |
+
stride (int): output stride of the module, avg pool used if stride == 2
|
62 |
+
num_heads (int): parallel attention heads.
|
63 |
+
dim_head (int): dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set
|
64 |
+
r (int): local lambda convolution radius. Use lambda conv if set, else relative pos if not. (default: 9)
|
65 |
+
qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0)
|
66 |
+
qkv_bias (bool): add bias to q, k, and v projections
|
67 |
+
"""
|
68 |
+
def __init__(
|
69 |
+
self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=16, r=9,
|
70 |
+
qk_ratio=1.0, qkv_bias=False):
|
71 |
+
super().__init__()
|
72 |
+
dim_out = dim_out or dim
|
73 |
+
assert dim_out % num_heads == 0, ' should be divided by num_heads'
|
74 |
+
self.dim_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads
|
75 |
+
self.num_heads = num_heads
|
76 |
+
self.dim_v = dim_out // num_heads
|
77 |
+
|
78 |
+
self.qkv = nn.Conv2d(
|
79 |
+
dim,
|
80 |
+
num_heads * self.dim_qk + self.dim_qk + self.dim_v,
|
81 |
+
kernel_size=1, bias=qkv_bias)
|
82 |
+
self.norm_q = nn.BatchNorm2d(num_heads * self.dim_qk)
|
83 |
+
self.norm_v = nn.BatchNorm2d(self.dim_v)
|
84 |
+
|
85 |
+
if r is not None:
|
86 |
+
# local lambda convolution for pos
|
87 |
+
self.conv_lambda = nn.Conv3d(1, self.dim_qk, (r, r, 1), padding=(r // 2, r // 2, 0))
|
88 |
+
self.pos_emb = None
|
89 |
+
self.rel_pos_indices = None
|
90 |
+
else:
|
91 |
+
# relative pos embedding
|
92 |
+
assert feat_size is not None
|
93 |
+
feat_size = to_2tuple(feat_size)
|
94 |
+
rel_size = [2 * s - 1 for s in feat_size]
|
95 |
+
self.conv_lambda = None
|
96 |
+
self.pos_emb = nn.Parameter(torch.zeros(rel_size[0], rel_size[1], self.dim_qk))
|
97 |
+
self.register_buffer('rel_pos_indices', rel_pos_indices(feat_size), persistent=False)
|
98 |
+
|
99 |
+
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity()
|
100 |
+
|
101 |
+
self.reset_parameters()
|
102 |
+
|
103 |
+
def reset_parameters(self):
|
104 |
+
trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) # fan-in
|
105 |
+
if self.conv_lambda is not None:
|
106 |
+
trunc_normal_(self.conv_lambda.weight, std=self.dim_qk ** -0.5)
|
107 |
+
if self.pos_emb is not None:
|
108 |
+
trunc_normal_(self.pos_emb, std=.02)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
B, C, H, W = x.shape
|
112 |
+
M = H * W
|
113 |
+
qkv = self.qkv(x)
|
114 |
+
q, k, v = torch.split(qkv, [
|
115 |
+
self.num_heads * self.dim_qk, self.dim_qk, self.dim_v], dim=1)
|
116 |
+
q = self.norm_q(q).reshape(B, self.num_heads, self.dim_qk, M).transpose(-1, -2) # B, num_heads, M, K
|
117 |
+
v = self.norm_v(v).reshape(B, self.dim_v, M).transpose(-1, -2) # B, M, V
|
118 |
+
k = F.softmax(k.reshape(B, self.dim_qk, M), dim=-1) # B, K, M
|
119 |
+
|
120 |
+
content_lam = k @ v # B, K, V
|
121 |
+
content_out = q @ content_lam.unsqueeze(1) # B, num_heads, M, V
|
122 |
+
|
123 |
+
if self.pos_emb is None:
|
124 |
+
position_lam = self.conv_lambda(v.reshape(B, 1, H, W, self.dim_v)) # B, H, W, V, K
|
125 |
+
position_lam = position_lam.reshape(B, 1, self.dim_qk, H * W, self.dim_v).transpose(2, 3) # B, 1, M, K, V
|
126 |
+
else:
|
127 |
+
# FIXME relative pos embedding path not fully verified
|
128 |
+
pos_emb = self.pos_emb[self.rel_pos_indices[0], self.rel_pos_indices[1]].expand(B, -1, -1, -1)
|
129 |
+
position_lam = (pos_emb.transpose(-1, -2) @ v.unsqueeze(1)).unsqueeze(1) # B, 1, M, K, V
|
130 |
+
position_out = (q.unsqueeze(-2) @ position_lam).squeeze(-2) # B, num_heads, M, V
|
131 |
+
|
132 |
+
out = (content_out + position_out).transpose(-1, -2).reshape(B, C, H, W) # B, C (num_heads * V), H, W
|
133 |
+
out = self.pool(out)
|
134 |
+
return out
|