|
|
|
""" ImageNet Validation Script |
|
|
|
This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained |
|
models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes |
|
canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit. |
|
|
|
Hacked together by Ross Wightman (https://github.com/rwightman) |
|
""" |
|
import argparse |
|
import csv |
|
import glob |
|
import json |
|
import logging |
|
import os |
|
import time |
|
from collections import OrderedDict |
|
from contextlib import suppress |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.parallel |
|
|
|
from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet |
|
from timm.layers import apply_test_time_pool, set_fast_norm |
|
from timm.models import create_model, load_checkpoint, is_model, list_models |
|
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, \ |
|
decay_batch_step, check_batch_size_retry, ParseKwargs, reparameterize_model |
|
|
|
try: |
|
from apex import amp |
|
has_apex = True |
|
except ImportError: |
|
has_apex = False |
|
|
|
try: |
|
from functorch.compile import memory_efficient_fusion |
|
has_functorch = True |
|
except ImportError as e: |
|
has_functorch = False |
|
|
|
has_compile = hasattr(torch, 'compile') |
|
|
|
_logger = logging.getLogger('validate') |
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') |
|
parser.add_argument('data', nargs='?', metavar='DIR', const=None, |
|
help='path to dataset (*deprecated*, use --data-dir)') |
|
parser.add_argument('--data-dir', metavar='DIR', |
|
help='path to dataset (root dir)') |
|
parser.add_argument('--dataset', metavar='NAME', default='', |
|
help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') |
|
parser.add_argument('--split', metavar='NAME', default='validation', |
|
help='dataset split (default: validation)') |
|
parser.add_argument('--num-samples', default=None, type=int, |
|
metavar='N', help='Manually specify num samples in dataset split, for IterableDatasets.') |
|
parser.add_argument('--dataset-download', action='store_true', default=False, |
|
help='Allow download of dataset for torch/ and tfds/ datasets that support it.') |
|
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', |
|
help='path to class to idx mapping file (default: "")') |
|
parser.add_argument('--input-key', default=None, type=str, |
|
help='Dataset key for input images.') |
|
parser.add_argument('--input-img-mode', default=None, type=str, |
|
help='Dataset image conversion mode for input images.') |
|
parser.add_argument('--target-key', default=None, type=str, |
|
help='Dataset key for target labels.') |
|
parser.add_argument('--dataset-trust-remote-code', action='store_true', default=False, |
|
help='Allow huggingface dataset import to execute code downloaded from the dataset\'s repo.') |
|
|
|
parser.add_argument('--model', '-m', metavar='NAME', default='dpn92', |
|
help='model architecture (default: dpn92)') |
|
parser.add_argument('--pretrained', dest='pretrained', action='store_true', |
|
help='use pre-trained model') |
|
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
|
help='number of data loading workers (default: 4)') |
|
parser.add_argument('-b', '--batch-size', default=256, type=int, |
|
metavar='N', help='mini-batch size (default: 256)') |
|
parser.add_argument('--img-size', default=None, type=int, |
|
metavar='N', help='Input image dimension, uses model default if empty') |
|
parser.add_argument('--in-chans', type=int, default=None, metavar='N', |
|
help='Image input channels (default: None => 3)') |
|
parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N', |
|
help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') |
|
parser.add_argument('--use-train-size', action='store_true', default=False, |
|
help='force use of train input size, even when test size is specified in pretrained cfg') |
|
parser.add_argument('--crop-pct', default=None, type=float, |
|
metavar='N', help='Input image center crop pct') |
|
parser.add_argument('--crop-mode', default=None, type=str, |
|
metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') |
|
parser.add_argument('--crop-border-pixels', type=int, default=None, |
|
help='Crop pixels from image border.') |
|
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', |
|
help='Override mean pixel value of dataset') |
|
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', |
|
help='Override std deviation of of dataset') |
|
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', |
|
help='Image resize interpolation type (overrides model)') |
|
parser.add_argument('--num-classes', type=int, default=None, |
|
help='Number classes in dataset') |
|
parser.add_argument('--gp', default=None, type=str, metavar='POOL', |
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') |
|
parser.add_argument('--log-freq', default=10, type=int, |
|
metavar='N', help='batch logging frequency (default: 10)') |
|
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', |
|
help='path to latest checkpoint (default: none)') |
|
parser.add_argument('--num-gpu', type=int, default=1, |
|
help='Number of GPUS to use') |
|
parser.add_argument('--test-pool', dest='test_pool', action='store_true', |
|
help='enable test time pool') |
|
parser.add_argument('--no-prefetcher', action='store_true', default=False, |
|
help='disable fast prefetcher') |
|
parser.add_argument('--pin-mem', action='store_true', default=False, |
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') |
|
parser.add_argument('--channels-last', action='store_true', default=False, |
|
help='Use channels_last memory layout') |
|
parser.add_argument('--device', default='cuda', type=str, |
|
help="Device (accelerator) to use.") |
|
parser.add_argument('--amp', action='store_true', default=False, |
|
help='use NVIDIA Apex AMP or Native AMP for mixed precision training') |
|
parser.add_argument('--amp-dtype', default='float16', type=str, |
|
help='lower precision AMP dtype (default: float16)') |
|
parser.add_argument('--amp-impl', default='native', type=str, |
|
help='AMP impl to use, "native" or "apex" (default: native)') |
|
parser.add_argument('--model-dtype', default=None, type=str, |
|
help='Model dtype override (non-AMP) (default: float32)') |
|
parser.add_argument('--tf-preprocessing', action='store_true', default=False, |
|
help='Use Tensorflow preprocessing pipeline (require CPU TF installed') |
|
parser.add_argument('--use-ema', dest='use_ema', action='store_true', |
|
help='use ema version of weights if present') |
|
parser.add_argument('--fuser', default='', type=str, |
|
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") |
|
parser.add_argument('--fast-norm', default=False, action='store_true', |
|
help='enable experimental fast-norm') |
|
parser.add_argument('--reparam', default=False, action='store_true', |
|
help='Reparameterize model') |
|
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) |
|
parser.add_argument('--torchcompile-mode', type=str, default=None, |
|
help="torch.compile mode (default: None).") |
|
|
|
scripting_group = parser.add_mutually_exclusive_group() |
|
scripting_group.add_argument('--torchscript', default=False, action='store_true', |
|
help='torch.jit.script the full model') |
|
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', |
|
help="Enable compilation w/ specified backend (default: inductor).") |
|
scripting_group.add_argument('--aot-autograd', default=False, action='store_true', |
|
help="Enable AOT Autograd support.") |
|
|
|
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', |
|
help='Output csv file for validation results (summary)') |
|
parser.add_argument('--results-format', default='csv', type=str, |
|
help='Format for results file one of (csv, json) (default: csv).') |
|
parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', |
|
help='Real labels JSON file for imagenet evaluation') |
|
parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME', |
|
help='Valid label indices txt file for validation of partial label space') |
|
parser.add_argument('--retry', default=False, action='store_true', |
|
help='Enable batch size decay & retry for single model validation') |
|
|
|
|
|
def validate(args): |
|
|
|
args.pretrained = args.pretrained or not args.checkpoint |
|
args.prefetcher = not args.no_prefetcher |
|
|
|
if torch.cuda.is_available(): |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
device = torch.device(args.device) |
|
|
|
model_dtype = None |
|
if args.model_dtype: |
|
assert args.model_dtype in ('float32', 'float16', 'bfloat16') |
|
model_dtype = getattr(torch, args.model_dtype) |
|
|
|
|
|
use_amp = None |
|
amp_autocast = suppress |
|
if args.amp: |
|
assert model_dtype is None or model_dtype == torch.float32, 'float32 model dtype must be used with AMP' |
|
if args.amp_impl == 'apex': |
|
assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' |
|
assert args.amp_dtype == 'float16' |
|
use_amp = 'apex' |
|
_logger.info('Validating in mixed precision with NVIDIA APEX AMP.') |
|
else: |
|
assert args.amp_dtype in ('float16', 'bfloat16') |
|
use_amp = 'native' |
|
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 |
|
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) |
|
_logger.info('Validating in mixed precision with native PyTorch AMP.') |
|
else: |
|
_logger.info(f'Validating in {model_dtype or torch.float32}. AMP not enabled.') |
|
|
|
if args.fuser: |
|
set_jit_fuser(args.fuser) |
|
|
|
if args.fast_norm: |
|
set_fast_norm() |
|
|
|
|
|
in_chans = 3 |
|
if args.in_chans is not None: |
|
in_chans = args.in_chans |
|
elif args.input_size is not None: |
|
in_chans = args.input_size[0] |
|
|
|
model = create_model( |
|
args.model, |
|
pretrained=args.pretrained, |
|
num_classes=args.num_classes, |
|
in_chans=in_chans, |
|
global_pool=args.gp, |
|
scriptable=args.torchscript, |
|
**args.model_kwargs, |
|
) |
|
if args.num_classes is None: |
|
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' |
|
args.num_classes = model.num_classes |
|
|
|
if args.checkpoint: |
|
load_checkpoint(model, args.checkpoint, args.use_ema) |
|
|
|
if args.reparam: |
|
model = reparameterize_model(model) |
|
|
|
param_count = sum([m.numel() for m in model.parameters()]) |
|
_logger.info('Model %s created, param count: %d' % (args.model, param_count)) |
|
|
|
data_config = resolve_data_config( |
|
vars(args), |
|
model=model, |
|
use_test_size=not args.use_train_size, |
|
verbose=True, |
|
) |
|
test_time_pool = False |
|
if args.test_pool: |
|
model, test_time_pool = apply_test_time_pool(model, data_config) |
|
|
|
model = model.to(device=device, dtype=model_dtype) |
|
if args.channels_last: |
|
model = model.to(memory_format=torch.channels_last) |
|
|
|
if args.torchscript: |
|
assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' |
|
model = torch.jit.script(model) |
|
elif args.torchcompile: |
|
assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' |
|
torch._dynamo.reset() |
|
model = torch.compile(model, backend=args.torchcompile, mode=args.torchcompile_mode) |
|
elif args.aot_autograd: |
|
assert has_functorch, "functorch is needed for --aot-autograd" |
|
model = memory_efficient_fusion(model) |
|
|
|
if use_amp == 'apex': |
|
model = amp.initialize(model, opt_level='O1') |
|
|
|
if args.num_gpu > 1: |
|
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) |
|
|
|
criterion = nn.CrossEntropyLoss().to(device) |
|
|
|
root_dir = args.data or args.data_dir |
|
if args.input_img_mode is None: |
|
input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' |
|
else: |
|
input_img_mode = args.input_img_mode |
|
dataset = create_dataset( |
|
root=root_dir, |
|
name=args.dataset, |
|
split=args.split, |
|
download=args.dataset_download, |
|
load_bytes=args.tf_preprocessing, |
|
class_map=args.class_map, |
|
num_samples=args.num_samples, |
|
input_key=args.input_key, |
|
input_img_mode=input_img_mode, |
|
target_key=args.target_key, |
|
trust_remote_code=args.dataset_trust_remote_code, |
|
) |
|
|
|
if args.valid_labels: |
|
with open(args.valid_labels, 'r') as f: |
|
valid_labels = [int(line.rstrip()) for line in f] |
|
else: |
|
valid_labels = None |
|
|
|
if args.real_labels: |
|
real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels) |
|
else: |
|
real_labels = None |
|
|
|
crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] |
|
loader = create_loader( |
|
dataset, |
|
input_size=data_config['input_size'], |
|
batch_size=args.batch_size, |
|
use_prefetcher=args.prefetcher, |
|
interpolation=data_config['interpolation'], |
|
mean=data_config['mean'], |
|
std=data_config['std'], |
|
num_workers=args.workers, |
|
crop_pct=crop_pct, |
|
crop_mode=data_config['crop_mode'], |
|
crop_border_pixels=args.crop_border_pixels, |
|
pin_memory=args.pin_mem, |
|
device=device, |
|
img_dtype=model_dtype or torch.float32, |
|
tf_preprocessing=args.tf_preprocessing, |
|
) |
|
|
|
batch_time = AverageMeter() |
|
losses = AverageMeter() |
|
top1 = AverageMeter() |
|
top5 = AverageMeter() |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
|
|
input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device=device, dtype=model_dtype) |
|
if args.channels_last: |
|
input = input.contiguous(memory_format=torch.channels_last) |
|
with amp_autocast(): |
|
model(input) |
|
|
|
end = time.time() |
|
for batch_idx, (input, target) in enumerate(loader): |
|
if args.no_prefetcher: |
|
target = target.to(device=device) |
|
input = input.to(device=device, dtype=model_dtype) |
|
if args.channels_last: |
|
input = input.contiguous(memory_format=torch.channels_last) |
|
|
|
|
|
with amp_autocast(): |
|
output = model(input) |
|
|
|
if valid_labels is not None: |
|
output = output[:, valid_labels] |
|
loss = criterion(output, target) |
|
|
|
if real_labels is not None: |
|
real_labels.add_result(output) |
|
|
|
|
|
acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5)) |
|
losses.update(loss.item(), input.size(0)) |
|
top1.update(acc1.item(), input.size(0)) |
|
top5.update(acc5.item(), input.size(0)) |
|
|
|
|
|
batch_time.update(time.time() - end) |
|
end = time.time() |
|
|
|
if batch_idx % args.log_freq == 0: |
|
_logger.info( |
|
'Test: [{0:>4d}/{1}] ' |
|
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' |
|
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' |
|
'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' |
|
'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( |
|
batch_idx, |
|
len(loader), |
|
batch_time=batch_time, |
|
rate_avg=input.size(0) / batch_time.avg, |
|
loss=losses, |
|
top1=top1, |
|
top5=top5 |
|
) |
|
) |
|
|
|
if real_labels is not None: |
|
|
|
top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5) |
|
else: |
|
top1a, top5a = top1.avg, top5.avg |
|
results = OrderedDict( |
|
model=args.model, |
|
top1=round(top1a, 4), top1_err=round(100 - top1a, 4), |
|
top5=round(top5a, 4), top5_err=round(100 - top5a, 4), |
|
param_count=round(param_count / 1e6, 2), |
|
img_size=data_config['input_size'][-1], |
|
crop_pct=crop_pct, |
|
interpolation=data_config['interpolation'], |
|
) |
|
|
|
_logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( |
|
results['top1'], results['top1_err'], results['top5'], results['top5_err'])) |
|
|
|
return results |
|
|
|
|
|
def _try_run(args, initial_batch_size): |
|
batch_size = initial_batch_size |
|
results = OrderedDict() |
|
error_str = 'Unknown' |
|
while batch_size: |
|
args.batch_size = batch_size * args.num_gpu |
|
try: |
|
if 'cuda' in args.device and torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
elif "npu" in args.device and torch.npu.is_available(): |
|
torch.npu.empty_cache() |
|
results = validate(args) |
|
return results |
|
except RuntimeError as e: |
|
error_str = str(e) |
|
_logger.error(f'"{error_str}" while running validation.') |
|
if not check_batch_size_retry(error_str): |
|
break |
|
batch_size = decay_batch_step(batch_size) |
|
_logger.warning(f'Reducing batch size to {batch_size} for retry.') |
|
results['error'] = error_str |
|
_logger.error(f'{args.model} failed to validate ({error_str}).') |
|
return results |
|
|
|
|
|
_NON_IN1K_FILTERS = ['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae', '*seer'] |
|
|
|
|
|
def main(): |
|
setup_default_logging() |
|
args = parser.parse_args() |
|
model_cfgs = [] |
|
model_names = [] |
|
if os.path.isdir(args.checkpoint): |
|
|
|
checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') |
|
checkpoints += glob.glob(args.checkpoint + '/*.pth') |
|
model_names = list_models(args.model) |
|
model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] |
|
else: |
|
if args.model == 'all': |
|
|
|
args.pretrained = True |
|
model_names = list_models( |
|
pretrained=True, |
|
exclude_filters=_NON_IN1K_FILTERS, |
|
) |
|
model_cfgs = [(n, '') for n in model_names] |
|
elif not is_model(args.model): |
|
|
|
model_names = list_models( |
|
args.model, |
|
pretrained=True, |
|
) |
|
model_cfgs = [(n, '') for n in model_names] |
|
|
|
if not model_cfgs and os.path.isfile(args.model): |
|
with open(args.model) as f: |
|
model_names = [line.rstrip() for line in f] |
|
model_cfgs = [(n, None) for n in model_names if n] |
|
|
|
if len(model_cfgs): |
|
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) |
|
results = [] |
|
try: |
|
initial_batch_size = args.batch_size |
|
for m, c in model_cfgs: |
|
args.model = m |
|
args.checkpoint = c |
|
r = _try_run(args, initial_batch_size) |
|
if 'error' in r: |
|
continue |
|
if args.checkpoint: |
|
r['checkpoint'] = args.checkpoint |
|
results.append(r) |
|
except KeyboardInterrupt as e: |
|
pass |
|
results = sorted(results, key=lambda x: x['top1'], reverse=True) |
|
else: |
|
if args.retry: |
|
results = _try_run(args, args.batch_size) |
|
else: |
|
results = validate(args) |
|
|
|
if args.results_file: |
|
write_results(args.results_file, results, format=args.results_format) |
|
|
|
|
|
print(f'--result\n{json.dumps(results, indent=4)}') |
|
|
|
|
|
def write_results(results_file, results, format='csv'): |
|
with open(results_file, mode='w') as cf: |
|
if format == 'json': |
|
json.dump(results, cf, indent=4) |
|
else: |
|
if not isinstance(results, (list, tuple)): |
|
results = [results] |
|
if not results: |
|
return |
|
dw = csv.DictWriter(cf, fieldnames=results[0].keys()) |
|
dw.writeheader() |
|
for r in results: |
|
dw.writerow(r) |
|
cf.flush() |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|