meg's picture
meg HF staff
Add files using upload-large-folder tool
e411e4d verified
raw
history blame
36.7 kB
""" An PyTorch implementation of Hiera
Adapted for timm from originals at https://github.com/facebookresearch/hiera
"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
#
# Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles
#
# Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan,
# Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed,
# Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer.
#
# Paper: https://arxiv.org/abs/2306.00989/
#
# References:
# slowfast: https://github.com/facebookresearch/SlowFast
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# --------------------------------------------------------
import math
from functools import partial
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \
_assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax
from ._registry import generate_default_cfgs, register_model
from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._features_fx import register_notrace_function
from ._manipulate import named_apply
__all__ = ['Hiera']
def conv_nd(n: int) -> Type[nn.Module]:
"""
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
"""
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
@register_notrace_function
def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor:
# target_size: [(T), (H), W]
# (spatial) mask: [B, C, (t), (h), w]
if mask is None:
return mask
_assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.")
if mask.shape[2:] != target_size:
return F.interpolate(mask.float(), size=target_size)
return mask
def undo_windowing(
x: torch.Tensor,
shape: List[int],
mu_shape: List[int],
) -> torch.Tensor:
"""
Restore spatial organization by undoing windowed organization of mask units.
Args:
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
shape: current spatial shape, if it were not organized into mask unit
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
Returns:
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
"""
D = len(shape)
B, C = x.shape[0], x.shape[-1]
# [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
x = x.view(B, *num_MUs, *mu_shape, C)
# [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
permute = (
[0]
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], [])
+ [len(x.shape) - 1]
)
x = x.permute(permute).reshape(B, *shape, C)
return x
class Unroll(nn.Module):
"""
Reorders the tokens such that patches are contiguous in memory.
E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as
[B, (Sy, Sx, H // Sy, W // Sx), C]
This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1).
Not only is this faster, but it also makes it easy to support inputs of arbitrary
dimensions in addition to patch-wise sparsity.
Performing this operation multiple times in sequence puts entire windows as contiguous
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
computed easily and efficiently, while also allowing max to be applied sequentially.
Note: This means that intermediate values of the model are not in HxW order, so they
need to be re-rolled if you want to use the intermediate values as a HxW feature map.
The last block of the network is fine though, since by then the strides are all consumed.
"""
def __init__(
self,
input_size: Tuple[int, ...],
patch_stride: Tuple[int, ...],
unroll_schedule: List[Tuple[int, ...]],
):
super().__init__()
self.size = [i // s for i, s in zip(input_size, patch_stride)]
self.schedule = unroll_schedule
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Input: Flattened patch embeddings [B, N, C]
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
"""
B, _, C = x.shape
cur_size = self.size
x = x.view(*([B] + cur_size + [C]))
for strides in self.schedule:
# Move patches with the given strides to the batch dimension
# Create a view of the tensor with the patch stride as separate dims
# For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
cur_size = [i // s for i, s in zip(cur_size, strides)]
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
x = x.view(new_shape)
# Move the patch stride into the batch dimension
# For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
L = len(new_shape)
permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
x = x.permute(permute)
# Now finally flatten the relevant dims into the batch dimension
x = x.flatten(0, len(strides))
B *= math.prod(strides)
x = x.reshape(-1, math.prod(self.size), C)
return x
class Reroll(nn.Module):
"""
Undos the "unroll" operation so that you can use intermediate features.
"""
def __init__(
self,
input_size: Tuple[int, ...],
patch_stride: Tuple[int, ...],
unroll_schedule: List[Tuple[int, ...]],
stage_ends: List[int],
q_pool: int,
):
super().__init__()
self.size = [i // s for i, s in zip(input_size, patch_stride)]
# The first stage has to reverse everything
# The next stage has to reverse all but the first unroll, etc.
self.schedule = {}
size = self.size
for i in range(stage_ends[-1] + 1):
self.schedule[i] = unroll_schedule, size
# schedule unchanged if no pooling at a stage end
if i in stage_ends[:q_pool]:
if len(unroll_schedule) > 0:
size = [n // s for n, s in zip(size, unroll_schedule[0])]
unroll_schedule = unroll_schedule[1:]
def forward(
self,
x: torch.Tensor,
block_idx: int,
mask: torch.Tensor = None
) -> torch.Tensor:
"""
Roll the given tensor back up to spatial order assuming it's from the given block.
If no mask is provided:
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
If a mask is provided:
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
"""
schedule, size = self.schedule[block_idx]
B, N, C = x.shape
D = len(size)
cur_mu_shape = [1] * D
for strides in schedule:
# Extract the current patch from N
x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C)
# Move that patch into the current MU
# Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
L = len(x.shape)
permute = (
[0, 1 + D]
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], [])
+ [L - 1]
)
x = x.permute(permute)
# Reshape to [B, N//(Sy*Sx), *MU, C]
for i in range(D):
cur_mu_shape[i] *= strides[i]
x = x.reshape(B, -1, *cur_mu_shape, C)
N = x.shape[1]
# Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
x = x.view(B, N, *cur_mu_shape, C)
# If masked, return [B, #MUs, MUy, MUx, C]
if mask is not None:
return x
# If not masked, we can return [B, H, W, C]
x = undo_windowing(x, size, cur_mu_shape)
return x
class MaskUnitAttention(nn.Module):
"""
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
Note: this assumes the tokens have already been flattened and unrolled into mask units.
See `Unroll` for more details.
"""
fused_attn: torch.jit.Final[bool]
def __init__(
self,
dim: int,
dim_out: int,
heads: int,
q_stride: int = 1,
window_size: int = 0,
use_mask_unit_attn: bool = False,
):
"""
Args:
- dim, dim_out: The input and output feature dimensions.
- heads: The number of attention heads.
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
- use_mask_unit_attn: Use Mask Unit or Global Attention.
"""
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.heads = heads
self.q_stride = q_stride
self.head_dim = dim_out // heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, 3 * dim_out)
self.proj = nn.Linear(dim_out, dim_out)
self.window_size = window_size
self.use_mask_unit_attn = use_mask_unit_attn
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Input should be of shape [batch, tokens, channels]. """
B, N, _ = x.shape
num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5)
q, k, v = qkv.unbind(0)
if self.q_stride > 1:
# Refer to Unroll to see how this performs a maxpool-Nd
q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3)
if self.fused_attn:
# Note: the original paper did *not* use SDPA, it's a free boost!
x = F.scaled_dot_product_attention(q, k, v)
else:
attn = (q * self.scale) @ k.transpose(-1, -2)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
x = self.proj(x)
return x
class HieraBlock(nn.Module):
def __init__(
self,
dim: int,
dim_out: int,
heads: int,
mlp_ratio: float = 4.0,
drop_path: float = 0.0,
init_values: Optional[float] = None,
norm_layer: nn.Module = nn.LayerNorm,
act_layer: nn.Module = nn.GELU,
q_stride: int = 1,
window_size: int = 0,
use_expand_proj: bool = True,
use_mask_unit_attn: bool = False,
):
super().__init__()
self.dim = dim
self.dim_out = dim_out
self.norm1 = norm_layer(dim)
if dim != dim_out:
self.do_expand = True
if use_expand_proj:
self.proj = nn.Linear(dim, dim_out)
else:
assert dim_out == dim * 2
self.proj = None
else:
self.do_expand = False
self.proj = None
self.attn = MaskUnitAttention(
dim,
dim_out,
heads,
q_stride,
window_size,
use_mask_unit_attn
)
self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer)
self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Attention + Q Pooling
x_norm = self.norm1(x)
if self.do_expand:
if self.proj is not None:
x = self.proj(x_norm)
x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) # max-pool
else:
x = torch.cat([
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), # max-pool
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1), # avg-pool
],
dim=-1,
)
x = x + self.drop_path1(self.ls1(self.attn(x_norm)))
# MLP
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class PatchEmbed(nn.Module):
"""Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""
def __init__(
self,
dim_in: int,
dim_out: int,
kernel: Tuple[int, ...],
stride: Tuple[int, ...],
padding: Tuple[int, ...],
reshape: bool = True,
):
super().__init__()
# Support any number of spatial dimensions
self.spatial_dims = len(kernel)
self.reshape = reshape
self.proj = conv_nd(self.spatial_dims)(
dim_in,
dim_out,
kernel_size=kernel,
stride=stride,
padding=padding,
)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if mask is not None:
mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
x = self.proj(x * mask.to(torch.bool))
else:
x = self.proj(x)
if self.reshape:
x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1)
return x
class Hiera(nn.Module):
def __init__(
self,
img_size: Tuple[int, ...] = (224, 224),
in_chans: int = 3,
embed_dim: int = 96, # initial embed dim
num_heads: int = 1, # initial number of heads
num_classes: int = 1000,
global_pool: str = 'avg',
stages: Tuple[int, ...] = (2, 3, 16, 3),
q_pool: int = 3, # number of q_pool stages
q_stride: Tuple[int, ...] = (2, 2),
mask_unit_size: Tuple[int, ...] = (8, 8), # must divide q_stride ** (#stages-1)
# mask_unit_attn: which stages use mask unit attention?
mask_unit_attn: Tuple[bool, ...] = (True, True, False, False),
use_expand_proj: bool = True,
dim_mul: float = 2.0,
head_mul: float = 2.0,
patch_kernel: Tuple[int, ...] = (7, 7),
patch_stride: Tuple[int, ...] = (4, 4),
patch_padding: Tuple[int, ...] = (3, 3),
mlp_ratio: float = 4.0,
drop_path_rate: float = 0.0,
init_values: Optional[float] = None,
fix_init: bool = True,
weight_init: str = '',
norm_layer: Union[str, nn.Module] = "LayerNorm",
drop_rate: float = 0.0,
patch_drop_rate: float = 0.0,
head_init_scale: float = 0.001,
sep_pos_embed: bool = False,
abs_win_pos_embed: bool = False,
global_pos_size: Tuple[int, int] = (14, 14),
):
super().__init__()
self.num_classes = num_classes
self.grad_checkpointing = False
norm_layer = get_norm_layer(norm_layer)
if isinstance(img_size, int):
img_size = to_2tuple(img_size)
self.patch_stride = patch_stride
self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)]
num_tokens = math.prod(self.tokens_spatial_shape)
flat_mu_size = math.prod(mask_unit_size)
flat_q_stride = math.prod(q_stride)
assert q_pool < len(stages)
self.q_pool, self.q_stride = q_pool, q_stride
self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)]
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
self.patch_drop_rate = patch_drop_rate
self.patch_embed = PatchEmbed(
in_chans,
embed_dim,
patch_kernel,
patch_stride,
patch_padding,
)
self.pos_embed: Optional[nn.Parameter] = None
self.pos_embed_win: Optional[nn.Parameter] = None
self.pos_embed_spatial: Optional[nn.Parameter] = None
self.pos_embed_temporal: Optional[nn.Parameter] = None
if sep_pos_embed:
self.pos_embed_spatial = nn.Parameter(
torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim)
)
self.pos_embed_temporal = nn.Parameter(
torch.zeros(1, self.tokens_spatial_shape[0], embed_dim)
)
else:
if abs_win_pos_embed:
# absolute win, params NCHW to make tile & interpolate more natural before add & reshape
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size))
self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size))
else:
self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim))
# Setup roll and reroll modules
self.unroll = Unroll(
img_size,
patch_stride,
[q_stride] * len(self.stage_ends[:-1])
)
self.reroll = Reroll(
img_size,
patch_stride,
[q_stride] * len(self.stage_ends[:-1]),
self.stage_ends,
q_pool,
)
# q_pool locations
q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]]
# Transformer blocks
cur_stage = 0
depth = sum(stages)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList()
self.feature_info = []
for i in range(depth):
dim_out = embed_dim
# Mask unit or global attention.
# Lag by 1 block, so that global attention,
# applied post pooling on lower resolution
use_mask_unit_attn = mask_unit_attn[cur_stage]
if i - 1 in self.stage_ends:
dim_out = int(embed_dim * dim_mul)
num_heads = int(num_heads * head_mul)
cur_stage += 1
if i in q_pool_blocks:
flat_mu_size //= flat_q_stride
block = HieraBlock(
dim=embed_dim,
dim_out=dim_out,
heads=num_heads,
mlp_ratio=mlp_ratio,
drop_path=dpr[i],
init_values=init_values,
norm_layer=norm_layer,
q_stride=(flat_q_stride if i in q_pool_blocks else 1),
window_size=flat_mu_size,
use_expand_proj=use_expand_proj,
use_mask_unit_attn=use_mask_unit_attn,
)
embed_dim = dim_out
if i in self.stage_ends:
self.feature_info += [
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')]
self.blocks.append(block)
self.num_features = self.head_hidden_size = embed_dim
self.head = ClNormMlpClassifierHead(
embed_dim,
num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
norm_layer=norm_layer,
input_fmt='NLC',
)
# Initialize everything
if sep_pos_embed:
nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02)
nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02)
else:
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.pos_embed_win is not None:
nn.init.trunc_normal_(self.pos_embed_win, std=0.02)
if weight_init != 'skip':
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit
init_fn = partial(init_fn, classifier_name='head.fc')
named_apply(init_fn, self)
if fix_init:
self.fix_init_weight()
if isinstance(self.head.fc, nn.Linear):
self.head.fc.weight.data.mul_(head_init_scale)
self.head.fc.bias.data.mul_(head_init_scale)
def fix_init_weight(self):
def rescale(param, _layer_id):
param.div_(math.sqrt(2.0 * _layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@torch.jit.ignore
def no_weight_decay(self):
if self.pos_embed is not None:
return ["pos_embed"]
elif self.pos_embed_abs is not None:
return ['pos_embed_abs', 'pos_embed_win']
else:
return ["pos_embed_spatial", "pos_embed_temporal"]
@torch.jit.ignore
def group_matcher(self, coarse: bool = False) -> Dict:
return dict(
stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed',
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable: bool = True) -> None:
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool, reset_other=reset_other)
def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor:
"""
Generates a random mask, mask_ratio fraction are dropped.
1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc.
"""
B = x.shape[0]
# Tokens selected for masking at mask unit level
num_windows = math.prod(self.mask_spatial_shape) # num_mask_units
len_keep = int(num_windows * (1 - mask_ratio))
noise = torch.rand(B, num_windows, device=x.device)
# Sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# Generate the binary mask: 1 is *keep*, 0 is *remove*
# Note this is opposite to original MAE
mask = torch.zeros([B, num_windows], device=x.device)
mask[:, :len_keep] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask.bool()
def _pos_embed(self, x) -> torch.Tensor:
if self.pos_embed_win is not None:
# absolute win position embedding, from
# Window Attention is Bugged: How not to Interpolate Position Embeddings (https://arxiv.org/abs/2311.05613)
pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape)
pos_embed = F.interpolate(
self.pos_embed,
size=pos_embed_win.shape[-2:],
mode='bicubic',
antialias=True,
)
pos_embed = pos_embed + pos_embed_win
pos_embed = pos_embed.flatten(2).transpose(1, 2)
elif self.pos_embed is not None:
pos_embed = self.pos_embed
else:
pos_embed = (
self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1)
+
torch.repeat_interleave(
self.pos_embed_temporal,
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
dim=1,
)
)
x = x + pos_embed
return x
def forward_intermediates(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
indices: Optional[Union[int, List[int]]] = None,
norm: bool = False,
stop_early: bool = True,
output_fmt: str = 'NCHW',
intermediates_only: bool = False,
coarse: bool = True,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
""" Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to all intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert not norm, 'normalization of features not supported'
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.'
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
take_indices = [self.stage_ends[i] for i in take_indices]
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
if mask is not None:
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
else:
patch_mask = None
x = self.patch_embed(x, mask=patch_mask)
x = self._pos_embed(x)
x = self.unroll(x)
# Discard masked tokens
if mask is not None:
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])
intermediates = []
if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript
blocks = self.blocks
else:
blocks = self.blocks[:max_index + 1]
for i, blk in enumerate(blocks):
x = blk(x)
if i in take_indices:
x_int = self.reroll(x, i, mask=mask)
intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int)
if intermediates_only:
return intermediates
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
coarse: bool = True,
):
""" Prune layers not required for specified intermediates.
"""
if coarse:
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices)
max_index = self.stage_ends[max_index]
else:
take_indices, max_index = feature_take_indices(len(self.blocks), indices)
self.blocks = self.blocks[:max_index + 1] # truncate blocks
if prune_head:
self.head.reset(0, reset_other=True)
return take_indices
def forward_features(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
return_intermediates: bool = False,
) -> torch.Tensor:
"""
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
"""
if self.training and self.patch_drop_rate > 0:
# using mask for something like 'patch dropout' via mask-units in supervised train / fine-tune
assert mask is None
mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate)
if mask is not None:
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) # B, C, *mask_spatial_shape
else:
patch_mask = None
x = self.patch_embed(x, mask=patch_mask)
x = self._pos_embed(x)
x = self.unroll(x)
# Discard masked tokens
if mask is not None:
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1])
intermediates = []
for i, blk in enumerate(self.blocks):
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x)
else:
x = blk(x)
if return_intermediates and i in self.stage_ends:
intermediates.append(self.reroll(x, i, mask=mask))
# x may not always be in spatial order here.
# e.g. if q_pool = 2, mask_unit_size = (8, 8), and
# q_stride = (2, 2), not all unrolls were consumed,
# intermediates[-1] is x in spatial order
if return_intermediates:
return x, intermediates
return x
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
return x
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
x = self.forward_features(x, mask=mask)
if mask is None:
x = self.forward_head(x)
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
"hiera_tiny_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_tiny_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_small_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_small_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_base_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_base_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_base_plus_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_base_plus_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_large_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_large_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_huge_224.mae_in1k_ft_in1k": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
),
"hiera_huge_224.mae": _cfg(
hf_hub_id='timm/',
license='cc-by-nc-4.0',
num_classes=0,
),
"hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_e200_in12k": _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg(
hf_hub_id='timm/',
num_classes=11821,
input_size=(3, 256, 256), crop_pct=0.95,
),
"hiera_base_abswin_256.untrained": _cfg(
# hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95,
),
})
def checkpoint_filter_fn(state_dict, model=None):
state_dict = state_dict.get('model_state', state_dict)
output = {}
for k, v in state_dict.items():
# if k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
# # To resize pos embedding when using model at different size from pretrained weights
# from timm.layers import resample_abs_pos_embed
# v = resample_abs_pos_embed(
# v,
# new_size=(64, 64),
# num_prefix_tokens=0,
# verbose=True,
# )
if 'head.projection.' in k:
k = k.replace('head.projection.', 'head.fc.')
if k.startswith('encoder_norm.'):
k = k.replace('encoder_norm.', 'head.norm.')
elif k.startswith('norm.'):
k = k.replace('norm.', 'head.norm.')
if k == 'pos_embed_abs':
k = 'pos_embed'
output[k] = v
return output
def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera:
out_indices = kwargs.pop('out_indices', 4)
return build_model_with_cfg(
Hiera,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
**kwargs,
)
@register_model
def hiera_tiny_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2))
return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_small_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2))
return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_base_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_base_plus_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3))
return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_large_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4))
return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_huge_224(pretrained=False, **kwargs):
model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4))
return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_small_abswin_256(pretrained=False, **kwargs):
model_args = dict(
embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16),
init_values=1e-5, weight_init='jax', use_expand_proj=False,
)
return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def hiera_base_abswin_256(pretrained=False, **kwargs):
model_args = dict(
embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax')
return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs))