|
""" An PyTorch implementation of Hiera |
|
|
|
Adapted for timm from originals at https://github.com/facebookresearch/hiera |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from functools import partial |
|
from typing import Callable, Dict, List, Optional, Tuple, Type, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import DropPath, Mlp, LayerScale, ClNormMlpClassifierHead, use_fused_attn, \ |
|
_assert, get_norm_layer, to_2tuple, init_weight_vit, init_weight_jax |
|
|
|
from ._registry import generate_default_cfgs, register_model |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._features_fx import register_notrace_function |
|
from ._manipulate import named_apply |
|
|
|
|
|
__all__ = ['Hiera'] |
|
|
|
|
|
def conv_nd(n: int) -> Type[nn.Module]: |
|
""" |
|
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3. |
|
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises) |
|
""" |
|
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n] |
|
|
|
|
|
@register_notrace_function |
|
def get_resized_mask(target_size: List[int], mask: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
if mask is None: |
|
return mask |
|
|
|
_assert(len(mask.shape[2:]) == len(target_size), "mask spatial shape and target_size must match.") |
|
if mask.shape[2:] != target_size: |
|
return F.interpolate(mask.float(), size=target_size) |
|
return mask |
|
|
|
|
|
def undo_windowing( |
|
x: torch.Tensor, |
|
shape: List[int], |
|
mu_shape: List[int], |
|
) -> torch.Tensor: |
|
""" |
|
Restore spatial organization by undoing windowed organization of mask units. |
|
|
|
Args: |
|
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C] |
|
shape: current spatial shape, if it were not organized into mask unit |
|
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C]. |
|
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx] |
|
Returns: |
|
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C] |
|
""" |
|
D = len(shape) |
|
B, C = x.shape[0], x.shape[-1] |
|
|
|
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)] |
|
x = x.view(B, *num_MUs, *mu_shape, C) |
|
|
|
|
|
permute = ( |
|
[0] |
|
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))], []) |
|
+ [len(x.shape) - 1] |
|
) |
|
x = x.permute(permute).reshape(B, *shape, C) |
|
|
|
return x |
|
|
|
|
|
class Unroll(nn.Module): |
|
""" |
|
Reorders the tokens such that patches are contiguous in memory. |
|
E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as |
|
[B, (Sy, Sx, H // Sy, W // Sx), C] |
|
|
|
This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1). |
|
Not only is this faster, but it also makes it easy to support inputs of arbitrary |
|
dimensions in addition to patch-wise sparsity. |
|
|
|
Performing this operation multiple times in sequence puts entire windows as contiguous |
|
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of |
|
size 8x8 would be contiguous in memory, allowing operations like mask unit attention |
|
computed easily and efficiently, while also allowing max to be applied sequentially. |
|
|
|
Note: This means that intermediate values of the model are not in HxW order, so they |
|
need to be re-rolled if you want to use the intermediate values as a HxW feature map. |
|
The last block of the network is fine though, since by then the strides are all consumed. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size: Tuple[int, ...], |
|
patch_stride: Tuple[int, ...], |
|
unroll_schedule: List[Tuple[int, ...]], |
|
): |
|
super().__init__() |
|
self.size = [i // s for i, s in zip(input_size, patch_stride)] |
|
self.schedule = unroll_schedule |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Input: Flattened patch embeddings [B, N, C] |
|
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd |
|
""" |
|
B, _, C = x.shape |
|
cur_size = self.size |
|
x = x.view(*([B] + cur_size + [C])) |
|
|
|
for strides in self.schedule: |
|
|
|
|
|
|
|
|
|
cur_size = [i // s for i, s in zip(cur_size, strides)] |
|
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C] |
|
x = x.view(new_shape) |
|
|
|
|
|
|
|
L = len(new_shape) |
|
permute = [0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1] |
|
x = x.permute(permute) |
|
|
|
|
|
x = x.flatten(0, len(strides)) |
|
B *= math.prod(strides) |
|
|
|
x = x.reshape(-1, math.prod(self.size), C) |
|
return x |
|
|
|
|
|
class Reroll(nn.Module): |
|
""" |
|
Undos the "unroll" operation so that you can use intermediate features. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size: Tuple[int, ...], |
|
patch_stride: Tuple[int, ...], |
|
unroll_schedule: List[Tuple[int, ...]], |
|
stage_ends: List[int], |
|
q_pool: int, |
|
): |
|
super().__init__() |
|
self.size = [i // s for i, s in zip(input_size, patch_stride)] |
|
|
|
|
|
|
|
self.schedule = {} |
|
size = self.size |
|
for i in range(stage_ends[-1] + 1): |
|
self.schedule[i] = unroll_schedule, size |
|
|
|
if i in stage_ends[:q_pool]: |
|
if len(unroll_schedule) > 0: |
|
size = [n // s for n, s in zip(size, unroll_schedule[0])] |
|
unroll_schedule = unroll_schedule[1:] |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
block_idx: int, |
|
mask: torch.Tensor = None |
|
) -> torch.Tensor: |
|
""" |
|
Roll the given tensor back up to spatial order assuming it's from the given block. |
|
|
|
If no mask is provided: |
|
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc. |
|
If a mask is provided: |
|
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc. |
|
""" |
|
schedule, size = self.schedule[block_idx] |
|
B, N, C = x.shape |
|
|
|
D = len(size) |
|
cur_mu_shape = [1] * D |
|
|
|
for strides in schedule: |
|
|
|
x = x.view(B, *strides, N // math.prod(strides), *cur_mu_shape, C) |
|
|
|
|
|
|
|
L = len(x.shape) |
|
permute = ( |
|
[0, 1 + D] |
|
+ sum([list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))], []) |
|
+ [L - 1] |
|
) |
|
x = x.permute(permute) |
|
|
|
|
|
for i in range(D): |
|
cur_mu_shape[i] *= strides[i] |
|
x = x.reshape(B, -1, *cur_mu_shape, C) |
|
N = x.shape[1] |
|
|
|
|
|
x = x.view(B, N, *cur_mu_shape, C) |
|
|
|
|
|
if mask is not None: |
|
return x |
|
|
|
|
|
x = undo_windowing(x, size, cur_mu_shape) |
|
|
|
return x |
|
|
|
|
|
class MaskUnitAttention(nn.Module): |
|
""" |
|
Computes either Mask Unit or Global Attention. Also is able to perform q pooling. |
|
|
|
Note: this assumes the tokens have already been flattened and unrolled into mask units. |
|
See `Unroll` for more details. |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: int, |
|
heads: int, |
|
q_stride: int = 1, |
|
window_size: int = 0, |
|
use_mask_unit_attn: bool = False, |
|
): |
|
""" |
|
Args: |
|
- dim, dim_out: The input and output feature dimensions. |
|
- heads: The number of attention heads. |
|
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4). |
|
- window_size: The current (flattened) size of a mask unit *after* pooling (if any). |
|
- use_mask_unit_attn: Use Mask Unit or Global Attention. |
|
""" |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.dim_out = dim_out |
|
self.heads = heads |
|
self.q_stride = q_stride |
|
self.head_dim = dim_out // heads |
|
self.scale = self.head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.qkv = nn.Linear(dim, 3 * dim_out) |
|
self.proj = nn.Linear(dim_out, dim_out) |
|
|
|
self.window_size = window_size |
|
self.use_mask_unit_attn = use_mask_unit_attn |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" Input should be of shape [batch, tokens, channels]. """ |
|
B, N, _ = x.shape |
|
num_windows = (N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1 |
|
qkv = self.qkv(x).reshape(B, -1, num_windows, 3, self.heads, self.head_dim).permute(3, 0, 4, 2, 1, 5) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.q_stride > 1: |
|
|
|
q = q.view(B, self.heads, num_windows, self.q_stride, -1, self.head_dim).amax(dim=3) |
|
|
|
if self.fused_attn: |
|
|
|
x = F.scaled_dot_product_attention(q, k, v) |
|
else: |
|
attn = (q * self.scale) @ k.transpose(-1, -2) |
|
attn = attn.softmax(dim=-1) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 3).reshape(B, -1, self.dim_out) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class HieraBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: int, |
|
heads: int, |
|
mlp_ratio: float = 4.0, |
|
drop_path: float = 0.0, |
|
init_values: Optional[float] = None, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
act_layer: nn.Module = nn.GELU, |
|
q_stride: int = 1, |
|
window_size: int = 0, |
|
use_expand_proj: bool = True, |
|
use_mask_unit_attn: bool = False, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.dim_out = dim_out |
|
|
|
self.norm1 = norm_layer(dim) |
|
if dim != dim_out: |
|
self.do_expand = True |
|
if use_expand_proj: |
|
self.proj = nn.Linear(dim, dim_out) |
|
else: |
|
assert dim_out == dim * 2 |
|
self.proj = None |
|
else: |
|
self.do_expand = False |
|
self.proj = None |
|
self.attn = MaskUnitAttention( |
|
dim, |
|
dim_out, |
|
heads, |
|
q_stride, |
|
window_size, |
|
use_mask_unit_attn |
|
) |
|
self.ls1 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0 else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim_out) |
|
self.mlp = Mlp(dim_out, int(dim_out * mlp_ratio), act_layer=act_layer) |
|
self.ls2 = LayerScale(dim_out, init_values=init_values) if init_values is not None else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0 else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
x_norm = self.norm1(x) |
|
if self.do_expand: |
|
if self.proj is not None: |
|
x = self.proj(x_norm) |
|
x = x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1) |
|
else: |
|
x = torch.cat([ |
|
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).amax(dim=1), |
|
x.view(x.shape[0], self.attn.q_stride, -1, x.shape[-1]).mean(dim=1), |
|
], |
|
dim=-1, |
|
) |
|
x = x + self.drop_path1(self.ls1(self.attn(x_norm))) |
|
|
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Patch embed that supports any number of spatial dimensions (1d, 2d, 3d).""" |
|
|
|
def __init__( |
|
self, |
|
dim_in: int, |
|
dim_out: int, |
|
kernel: Tuple[int, ...], |
|
stride: Tuple[int, ...], |
|
padding: Tuple[int, ...], |
|
reshape: bool = True, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.spatial_dims = len(kernel) |
|
self.reshape = reshape |
|
self.proj = conv_nd(self.spatial_dims)( |
|
dim_in, |
|
dim_out, |
|
kernel_size=kernel, |
|
stride=stride, |
|
padding=padding, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if mask is not None: |
|
mask = get_resized_mask(target_size=x.shape[2:], mask=mask) |
|
x = self.proj(x * mask.to(torch.bool)) |
|
else: |
|
x = self.proj(x) |
|
if self.reshape: |
|
x = x.reshape(x.shape[0], x.shape[1], -1).transpose(2, 1) |
|
return x |
|
|
|
|
|
class Hiera(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
img_size: Tuple[int, ...] = (224, 224), |
|
in_chans: int = 3, |
|
embed_dim: int = 96, |
|
num_heads: int = 1, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
stages: Tuple[int, ...] = (2, 3, 16, 3), |
|
q_pool: int = 3, |
|
q_stride: Tuple[int, ...] = (2, 2), |
|
mask_unit_size: Tuple[int, ...] = (8, 8), |
|
|
|
mask_unit_attn: Tuple[bool, ...] = (True, True, False, False), |
|
use_expand_proj: bool = True, |
|
dim_mul: float = 2.0, |
|
head_mul: float = 2.0, |
|
patch_kernel: Tuple[int, ...] = (7, 7), |
|
patch_stride: Tuple[int, ...] = (4, 4), |
|
patch_padding: Tuple[int, ...] = (3, 3), |
|
mlp_ratio: float = 4.0, |
|
drop_path_rate: float = 0.0, |
|
init_values: Optional[float] = None, |
|
fix_init: bool = True, |
|
weight_init: str = '', |
|
norm_layer: Union[str, nn.Module] = "LayerNorm", |
|
drop_rate: float = 0.0, |
|
patch_drop_rate: float = 0.0, |
|
head_init_scale: float = 0.001, |
|
sep_pos_embed: bool = False, |
|
abs_win_pos_embed: bool = False, |
|
global_pos_size: Tuple[int, int] = (14, 14), |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.grad_checkpointing = False |
|
norm_layer = get_norm_layer(norm_layer) |
|
if isinstance(img_size, int): |
|
img_size = to_2tuple(img_size) |
|
|
|
self.patch_stride = patch_stride |
|
self.tokens_spatial_shape = [i // s for i, s in zip(img_size, patch_stride)] |
|
num_tokens = math.prod(self.tokens_spatial_shape) |
|
flat_mu_size = math.prod(mask_unit_size) |
|
flat_q_stride = math.prod(q_stride) |
|
assert q_pool < len(stages) |
|
self.q_pool, self.q_stride = q_pool, q_stride |
|
self.mu_size, self.mask_unit_size = flat_mu_size, mask_unit_size |
|
self.mask_spatial_shape = [i // s for i, s in zip(self.tokens_spatial_shape, self.mask_unit_size)] |
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] |
|
self.patch_drop_rate = patch_drop_rate |
|
|
|
self.patch_embed = PatchEmbed( |
|
in_chans, |
|
embed_dim, |
|
patch_kernel, |
|
patch_stride, |
|
patch_padding, |
|
) |
|
|
|
self.pos_embed: Optional[nn.Parameter] = None |
|
self.pos_embed_win: Optional[nn.Parameter] = None |
|
self.pos_embed_spatial: Optional[nn.Parameter] = None |
|
self.pos_embed_temporal: Optional[nn.Parameter] = None |
|
if sep_pos_embed: |
|
self.pos_embed_spatial = nn.Parameter( |
|
torch.zeros(1, self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], embed_dim) |
|
) |
|
self.pos_embed_temporal = nn.Parameter( |
|
torch.zeros(1, self.tokens_spatial_shape[0], embed_dim) |
|
) |
|
else: |
|
if abs_win_pos_embed: |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *global_pos_size)) |
|
self.pos_embed_win = nn.Parameter(torch.zeros(1, embed_dim, *mask_unit_size)) |
|
else: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_tokens, embed_dim)) |
|
|
|
|
|
self.unroll = Unroll( |
|
img_size, |
|
patch_stride, |
|
[q_stride] * len(self.stage_ends[:-1]) |
|
) |
|
self.reroll = Reroll( |
|
img_size, |
|
patch_stride, |
|
[q_stride] * len(self.stage_ends[:-1]), |
|
self.stage_ends, |
|
q_pool, |
|
) |
|
|
|
q_pool_blocks = [x + 1 for x in self.stage_ends[:q_pool]] |
|
|
|
|
|
cur_stage = 0 |
|
depth = sum(stages) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList() |
|
self.feature_info = [] |
|
for i in range(depth): |
|
dim_out = embed_dim |
|
|
|
|
|
|
|
use_mask_unit_attn = mask_unit_attn[cur_stage] |
|
|
|
if i - 1 in self.stage_ends: |
|
dim_out = int(embed_dim * dim_mul) |
|
num_heads = int(num_heads * head_mul) |
|
cur_stage += 1 |
|
if i in q_pool_blocks: |
|
flat_mu_size //= flat_q_stride |
|
|
|
block = HieraBlock( |
|
dim=embed_dim, |
|
dim_out=dim_out, |
|
heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
drop_path=dpr[i], |
|
init_values=init_values, |
|
norm_layer=norm_layer, |
|
q_stride=(flat_q_stride if i in q_pool_blocks else 1), |
|
window_size=flat_mu_size, |
|
use_expand_proj=use_expand_proj, |
|
use_mask_unit_attn=use_mask_unit_attn, |
|
) |
|
embed_dim = dim_out |
|
if i in self.stage_ends: |
|
self.feature_info += [ |
|
dict(num_chs=dim_out, reduction=2**(cur_stage+2), module=f'blocks.{self.stage_ends[cur_stage]}')] |
|
self.blocks.append(block) |
|
|
|
self.num_features = self.head_hidden_size = embed_dim |
|
self.head = ClNormMlpClassifierHead( |
|
embed_dim, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=drop_rate, |
|
norm_layer=norm_layer, |
|
input_fmt='NLC', |
|
) |
|
|
|
|
|
if sep_pos_embed: |
|
nn.init.trunc_normal_(self.pos_embed_spatial, std=0.02) |
|
nn.init.trunc_normal_(self.pos_embed_temporal, std=0.02) |
|
else: |
|
if self.pos_embed is not None: |
|
nn.init.trunc_normal_(self.pos_embed, std=0.02) |
|
if self.pos_embed_win is not None: |
|
nn.init.trunc_normal_(self.pos_embed_win, std=0.02) |
|
|
|
if weight_init != 'skip': |
|
init_fn = init_weight_jax if weight_init == 'jax' else init_weight_vit |
|
init_fn = partial(init_fn, classifier_name='head.fc') |
|
named_apply(init_fn, self) |
|
if fix_init: |
|
self.fix_init_weight() |
|
if isinstance(self.head.fc, nn.Linear): |
|
self.head.fc.weight.data.mul_(head_init_scale) |
|
self.head.fc.bias.data.mul_(head_init_scale) |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, _layer_id): |
|
param.div_(math.sqrt(2.0 * _layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
if self.pos_embed is not None: |
|
return ["pos_embed"] |
|
elif self.pos_embed_abs is not None: |
|
return ['pos_embed_abs', 'pos_embed_win'] |
|
else: |
|
return ["pos_embed_spatial", "pos_embed_temporal"] |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse: bool = False) -> Dict: |
|
return dict( |
|
stem=r'^pos_embed|pos_embed_spatial|pos_embed_temporal|pos_embed_abs|pos_embed_win|patch_embed', |
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable: bool = True) -> None: |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None, reset_other: bool = False): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool, reset_other=reset_other) |
|
|
|
def get_random_mask(self, x: torch.Tensor, mask_ratio: float) -> torch.Tensor: |
|
""" |
|
Generates a random mask, mask_ratio fraction are dropped. |
|
1 is *keep*, 0 is *remove*. Useful for MAE, FLIP, etc. |
|
""" |
|
B = x.shape[0] |
|
|
|
num_windows = math.prod(self.mask_spatial_shape) |
|
len_keep = int(num_windows * (1 - mask_ratio)) |
|
noise = torch.rand(B, num_windows, device=x.device) |
|
|
|
|
|
ids_shuffle = torch.argsort(noise, dim=1) |
|
ids_restore = torch.argsort(ids_shuffle, dim=1) |
|
|
|
|
|
|
|
mask = torch.zeros([B, num_windows], device=x.device) |
|
mask[:, :len_keep] = 1 |
|
|
|
mask = torch.gather(mask, dim=1, index=ids_restore) |
|
|
|
return mask.bool() |
|
|
|
def _pos_embed(self, x) -> torch.Tensor: |
|
if self.pos_embed_win is not None: |
|
|
|
|
|
pos_embed_win = self.pos_embed_win.tile(self.mask_spatial_shape) |
|
pos_embed = F.interpolate( |
|
self.pos_embed, |
|
size=pos_embed_win.shape[-2:], |
|
mode='bicubic', |
|
antialias=True, |
|
) |
|
pos_embed = pos_embed + pos_embed_win |
|
pos_embed = pos_embed.flatten(2).transpose(1, 2) |
|
elif self.pos_embed is not None: |
|
pos_embed = self.pos_embed |
|
else: |
|
pos_embed = ( |
|
self.pos_embed_spatial.repeat(1, self.tokens_spatial_shape[0], 1) |
|
+ |
|
torch.repeat_interleave( |
|
self.pos_embed_temporal, |
|
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2], |
|
dim=1, |
|
) |
|
) |
|
x = x + pos_embed |
|
return x |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = True, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
coarse: bool = True, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to all intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert not norm, 'normalization of features not supported' |
|
assert output_fmt in ('NCHW', 'NHWC'), 'Output format must be one of NCHW, NHWC.' |
|
if coarse: |
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) |
|
take_indices = [self.stage_ends[i] for i in take_indices] |
|
max_index = self.stage_ends[max_index] |
|
else: |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
|
|
if mask is not None: |
|
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) |
|
else: |
|
patch_mask = None |
|
x = self.patch_embed(x, mask=patch_mask) |
|
x = self._pos_embed(x) |
|
x = self.unroll(x) |
|
|
|
|
|
if mask is not None: |
|
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) |
|
|
|
intermediates = [] |
|
if torch.jit.is_scripting() or not stop_early: |
|
blocks = self.blocks |
|
else: |
|
blocks = self.blocks[:max_index + 1] |
|
for i, blk in enumerate(blocks): |
|
x = blk(x) |
|
if i in take_indices: |
|
x_int = self.reroll(x, i, mask=mask) |
|
intermediates.append(x_int.permute(0, 3, 1, 2) if output_fmt == 'NCHW' else x_int) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
coarse: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
if coarse: |
|
take_indices, max_index = feature_take_indices(len(self.stage_ends), indices) |
|
max_index = self.stage_ends[max_index] |
|
else: |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
self.blocks = self.blocks[:max_index + 1] |
|
if prune_head: |
|
self.head.reset(0, reset_other=True) |
|
return take_indices |
|
|
|
def forward_features( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
return_intermediates: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim. |
|
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch. |
|
""" |
|
if self.training and self.patch_drop_rate > 0: |
|
|
|
assert mask is None |
|
mask = self.get_random_mask(x, mask_ratio=self.patch_drop_rate) |
|
|
|
if mask is not None: |
|
patch_mask = mask.view(x.shape[0], 1, *self.mask_spatial_shape) |
|
else: |
|
patch_mask = None |
|
x = self.patch_embed(x, mask=patch_mask) |
|
x = self._pos_embed(x) |
|
x = self.unroll(x) |
|
|
|
|
|
if mask is not None: |
|
x = x[mask[..., None].tile(1, self.mu_size, x.shape[2])].view(x.shape[0], -1, x.shape[-1]) |
|
|
|
intermediates = [] |
|
for i, blk in enumerate(self.blocks): |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
if return_intermediates and i in self.stage_ends: |
|
intermediates.append(self.reroll(x, i, mask=mask)) |
|
|
|
|
|
|
|
|
|
|
|
if return_intermediates: |
|
return x, intermediates |
|
|
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: |
|
x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) |
|
return x |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
x = self.forward_features(x, mask=mask) |
|
if mask is None: |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
"hiera_tiny_224.mae_in1k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
), |
|
"hiera_tiny_224.mae": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
num_classes=0, |
|
), |
|
|
|
"hiera_small_224.mae_in1k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
), |
|
"hiera_small_224.mae": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
num_classes=0, |
|
), |
|
|
|
"hiera_base_224.mae_in1k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
), |
|
"hiera_base_224.mae": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
num_classes=0, |
|
), |
|
|
|
"hiera_base_plus_224.mae_in1k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
), |
|
"hiera_base_plus_224.mae": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
num_classes=0, |
|
), |
|
|
|
"hiera_large_224.mae_in1k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
), |
|
"hiera_large_224.mae": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
num_classes=0, |
|
), |
|
|
|
"hiera_huge_224.mae_in1k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
), |
|
"hiera_huge_224.mae": _cfg( |
|
hf_hub_id='timm/', |
|
license='cc-by-nc-4.0', |
|
num_classes=0, |
|
), |
|
|
|
"hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
), |
|
"hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k": _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
), |
|
"hiera_small_abswin_256.sbb2_e200_in12k": _cfg( |
|
hf_hub_id='timm/', |
|
num_classes=11821, |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
), |
|
"hiera_small_abswin_256.sbb2_pd_e200_in12k": _cfg( |
|
hf_hub_id='timm/', |
|
num_classes=11821, |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
), |
|
"hiera_base_abswin_256.untrained": _cfg( |
|
|
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
), |
|
}) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model=None): |
|
state_dict = state_dict.get('model_state', state_dict) |
|
output = {} |
|
for k, v in state_dict.items(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'head.projection.' in k: |
|
k = k.replace('head.projection.', 'head.fc.') |
|
if k.startswith('encoder_norm.'): |
|
k = k.replace('encoder_norm.', 'head.norm.') |
|
elif k.startswith('norm.'): |
|
k = k.replace('norm.', 'head.norm.') |
|
if k == 'pos_embed_abs': |
|
k = 'pos_embed' |
|
output[k] = v |
|
return output |
|
|
|
|
|
def _create_hiera(variant: str, pretrained: bool = False, **kwargs) -> Hiera: |
|
out_indices = kwargs.pop('out_indices', 4) |
|
|
|
return build_model_with_cfg( |
|
Hiera, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
|
|
|
|
@register_model |
|
def hiera_tiny_224(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 7, 2)) |
|
return _create_hiera('hiera_tiny_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_small_224(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=96, num_heads=1, stages=(1, 2, 11, 2)) |
|
return _create_hiera('hiera_small_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_base_224(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3)) |
|
return _create_hiera('hiera_base_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_base_plus_224(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=112, num_heads=2, stages=(2, 3, 16, 3)) |
|
return _create_hiera('hiera_base_plus_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_large_224(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=144, num_heads=2, stages=(2, 6, 36, 4)) |
|
return _create_hiera('hiera_large_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_huge_224(pretrained=False, **kwargs): |
|
model_args = dict(embed_dim=256, num_heads=4, stages=(2, 6, 36, 4)) |
|
return _create_hiera('hiera_huge_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_small_abswin_256(pretrained=False, **kwargs): |
|
model_args = dict( |
|
embed_dim=96, num_heads=1, stages=(1, 2, 11, 2), abs_win_pos_embed=True, global_pos_size=(16, 16), |
|
init_values=1e-5, weight_init='jax', use_expand_proj=False, |
|
) |
|
return _create_hiera('hiera_small_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def hiera_base_abswin_256(pretrained=False, **kwargs): |
|
model_args = dict( |
|
embed_dim=96, num_heads=1, stages=(2, 3, 16, 3), abs_win_pos_embed=True, init_values=1e-5, weight_init='jax') |
|
return _create_hiera('hiera_base_abswin_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|