meg's picture
meg HF staff
Add files using upload-large-folder tool
e411e4d verified
raw
history blame
23.6 kB
""" PP-HGNet (V1 & V2)
Reference:
https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md
The Paddle Implement of PP-HGNet (https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/docs/en/models/PP-HGNet_en.md)
PP-HGNet: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet.py
PP-HGNetv2: https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5.1/ppcls/arch/backbone/legendary_models/pp_hgnet_v2.py
"""
from typing import Dict, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SelectAdaptivePool2d, DropPath, create_conv2d
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs
from ._manipulate import checkpoint_seq
__all__ = ['HighPerfGpuNet']
class LearnableAffineBlock(nn.Module):
def __init__(
self,
scale_value=1.0,
bias_value=0.0
):
super().__init__()
self.scale = nn.Parameter(torch.tensor([scale_value]), requires_grad=True)
self.bias = nn.Parameter(torch.tensor([bias_value]), requires_grad=True)
def forward(self, x):
return self.scale * x + self.bias
class ConvBNAct(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size,
stride=1,
groups=1,
padding='',
use_act=True,
use_lab=False
):
super().__init__()
self.use_act = use_act
self.use_lab = use_lab
self.conv = create_conv2d(
in_chs,
out_chs,
kernel_size,
stride=stride,
padding=padding,
groups=groups,
)
self.bn = nn.BatchNorm2d(out_chs)
if self.use_act:
self.act = nn.ReLU()
else:
self.act = nn.Identity()
if self.use_act and self.use_lab:
self.lab = LearnableAffineBlock()
else:
self.lab = nn.Identity()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
x = self.lab(x)
return x
class LightConvBNAct(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size,
groups=1,
use_lab=False
):
super().__init__()
self.conv1 = ConvBNAct(
in_chs,
out_chs,
kernel_size=1,
use_act=False,
use_lab=use_lab,
)
self.conv2 = ConvBNAct(
out_chs,
out_chs,
kernel_size=kernel_size,
groups=out_chs,
use_act=True,
use_lab=use_lab,
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
class EseModule(nn.Module):
def __init__(self, chs):
super().__init__()
self.conv = nn.Conv2d(
chs,
chs,
kernel_size=1,
stride=1,
padding=0,
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
identity = x
x = x.mean((2, 3), keepdim=True)
x = self.conv(x)
x = self.sigmoid(x)
return torch.mul(identity, x)
class StemV1(nn.Module):
# for PP-HGNet
def __init__(self, stem_chs):
super().__init__()
self.stem = nn.Sequential(*[
ConvBNAct(
stem_chs[i],
stem_chs[i + 1],
kernel_size=3,
stride=2 if i == 0 else 1) for i in range(
len(stem_chs) - 1)
])
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
x = self.stem(x)
x = self.pool(x)
return x
class StemV2(nn.Module):
# for PP-HGNetv2
def __init__(self, in_chs, mid_chs, out_chs, use_lab=False):
super().__init__()
self.stem1 = ConvBNAct(
in_chs,
mid_chs,
kernel_size=3,
stride=2,
use_lab=use_lab,
)
self.stem2a = ConvBNAct(
mid_chs,
mid_chs // 2,
kernel_size=2,
stride=1,
use_lab=use_lab,
)
self.stem2b = ConvBNAct(
mid_chs // 2,
mid_chs,
kernel_size=2,
stride=1,
use_lab=use_lab,
)
self.stem3 = ConvBNAct(
mid_chs * 2,
mid_chs,
kernel_size=3,
stride=2,
use_lab=use_lab,
)
self.stem4 = ConvBNAct(
mid_chs,
out_chs,
kernel_size=1,
stride=1,
use_lab=use_lab,
)
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, ceil_mode=True)
def forward(self, x):
x = self.stem1(x)
x = F.pad(x, (0, 1, 0, 1))
x2 = self.stem2a(x)
x2 = F.pad(x2, (0, 1, 0, 1))
x2 = self.stem2b(x2)
x1 = self.pool(x)
x = torch.cat([x1, x2], dim=1)
x = self.stem3(x)
x = self.stem4(x)
return x
class HighPerfGpuBlock(nn.Module):
def __init__(
self,
in_chs,
mid_chs,
out_chs,
layer_num,
kernel_size=3,
residual=False,
light_block=False,
use_lab=False,
agg='ese',
drop_path=0.,
):
super().__init__()
self.residual = residual
self.layers = nn.ModuleList()
for i in range(layer_num):
if light_block:
self.layers.append(
LightConvBNAct(
in_chs if i == 0 else mid_chs,
mid_chs,
kernel_size=kernel_size,
use_lab=use_lab,
)
)
else:
self.layers.append(
ConvBNAct(
in_chs if i == 0 else mid_chs,
mid_chs,
kernel_size=kernel_size,
stride=1,
use_lab=use_lab,
)
)
# feature aggregation
total_chs = in_chs + layer_num * mid_chs
if agg == 'se':
aggregation_squeeze_conv = ConvBNAct(
total_chs,
out_chs // 2,
kernel_size=1,
stride=1,
use_lab=use_lab,
)
aggregation_excitation_conv = ConvBNAct(
out_chs // 2,
out_chs,
kernel_size=1,
stride=1,
use_lab=use_lab,
)
self.aggregation = nn.Sequential(
aggregation_squeeze_conv,
aggregation_excitation_conv,
)
else:
aggregation_conv = ConvBNAct(
total_chs,
out_chs,
kernel_size=1,
stride=1,
use_lab=use_lab,
)
att = EseModule(out_chs)
self.aggregation = nn.Sequential(
aggregation_conv,
att,
)
self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
def forward(self, x):
identity = x
output = [x]
for layer in self.layers:
x = layer(x)
output.append(x)
x = torch.cat(output, dim=1)
x = self.aggregation(x)
if self.residual:
x = self.drop_path(x) + identity
return x
class HighPerfGpuStage(nn.Module):
def __init__(
self,
in_chs,
mid_chs,
out_chs,
block_num,
layer_num,
downsample=True,
stride=2,
light_block=False,
kernel_size=3,
use_lab=False,
agg='ese',
drop_path=0.,
):
super().__init__()
self.downsample = downsample
if downsample:
self.downsample = ConvBNAct(
in_chs,
in_chs,
kernel_size=3,
stride=stride,
groups=in_chs,
use_act=False,
use_lab=use_lab,
)
else:
self.downsample = nn.Identity()
blocks_list = []
for i in range(block_num):
blocks_list.append(
HighPerfGpuBlock(
in_chs if i == 0 else out_chs,
mid_chs,
out_chs,
layer_num,
residual=False if i == 0 else True,
kernel_size=kernel_size,
light_block=light_block,
use_lab=use_lab,
agg=agg,
drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path,
)
)
self.blocks = nn.Sequential(*blocks_list)
self.grad_checkpointing= False
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x, flatten=False)
else:
x = self.blocks(x)
return x
class ClassifierHead(nn.Module):
def __init__(
self,
in_features: int,
num_classes: int,
pool_type: str = 'avg',
drop_rate: float = 0.,
hidden_size: Optional[int] = 2048,
use_lab: bool = False
):
super(ClassifierHead, self).__init__()
self.num_features = in_features
if pool_type is not None:
if not pool_type:
assert num_classes == 0, 'Classifier head must be removed if pooling is disabled'
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
if hidden_size is not None:
self.num_features = hidden_size
last_conv = nn.Conv2d(
in_features,
hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
act = nn.ReLU()
if use_lab:
lab = LearnableAffineBlock()
self.last_conv = nn.Sequential(last_conv, act, lab)
else:
self.last_conv = nn.Sequential(last_conv, act)
else:
self.last_conv = nn.Identity()
self.dropout = nn.Dropout(drop_rate)
self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def reset(self, num_classes: int, pool_type: Optional[str] = None):
if pool_type is not None:
if not pool_type:
assert num_classes == 0, 'Classifier head must be removed if pooling is disabled'
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
self.flatten = nn.Flatten(1) if pool_type else nn.Identity() # don't flatten if pooling disabled
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x, pre_logits: bool = False):
x = self.global_pool(x)
x = self.last_conv(x)
x = self.dropout(x)
x = self.flatten(x)
if pre_logits:
return x
x = self.fc(x)
return x
class HighPerfGpuNet(nn.Module):
def __init__(
self,
cfg: Dict,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
head_hidden_size: Optional[int] = 2048,
drop_rate: float = 0.,
drop_path_rate: float = 0.,
use_lab: bool = False,
**kwargs,
):
super(HighPerfGpuNet, self).__init__()
stem_type = cfg["stem_type"]
stem_chs = cfg["stem_chs"]
stages_cfg = [cfg["stage1"], cfg["stage2"], cfg["stage3"], cfg["stage4"]]
self.num_classes = num_classes
self.drop_rate = drop_rate
self.use_lab = use_lab
assert stem_type in ['v1', 'v2']
if stem_type == 'v2':
self.stem = StemV2(
in_chs=in_chans,
mid_chs=stem_chs[0],
out_chs=stem_chs[1],
use_lab=use_lab)
else:
self.stem = StemV1([in_chans] + stem_chs)
current_stride = 4
stages = []
self.feature_info = []
block_depths = [c[3] for c in stages_cfg]
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(block_depths)).split(block_depths)]
for i, stage_config in enumerate(stages_cfg):
in_chs, mid_chs, out_chs, block_num, downsample, light_block, kernel_size, layer_num = stage_config
stages += [HighPerfGpuStage(
in_chs=in_chs,
mid_chs=mid_chs,
out_chs=out_chs,
block_num=block_num,
layer_num=layer_num,
downsample=downsample,
light_block=light_block,
kernel_size=kernel_size,
use_lab=use_lab,
agg='ese' if stem_type == 'v1' else 'se',
drop_path=dpr[i],
)]
self.num_features = out_chs
if downsample:
current_stride *= 2
self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
self.head = ClassifierHead(
self.num_features,
num_classes=num_classes,
pool_type=global_pool,
drop_rate=drop_rate,
hidden_size=head_hidden_size,
use_lab=use_lab
)
self.head_hidden_size = self.head.num_features
for n, m in self.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.zeros_(m.bias)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)',
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)
def forward_features(self, x):
x = self.stem(x)
return self.stages(x)
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
model_cfgs = dict(
# PP-HGNet
hgnet_tiny={
"stem_type": 'v1',
"stem_chs": [48, 48, 96],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [96, 96, 224, 1, False, False, 3, 5],
"stage2": [224, 128, 448, 1, True, False, 3, 5],
"stage3": [448, 160, 512, 2, True, False, 3, 5],
"stage4": [512, 192, 768, 1, True, False, 3, 5],
},
hgnet_small={
"stem_type": 'v1',
"stem_chs": [64, 64, 128],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [128, 128, 256, 1, False, False, 3, 6],
"stage2": [256, 160, 512, 1, True, False, 3, 6],
"stage3": [512, 192, 768, 2, True, False, 3, 6],
"stage4": [768, 224, 1024, 1, True, False, 3, 6],
},
hgnet_base={
"stem_type": 'v1',
"stem_chs": [96, 96, 160],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [160, 192, 320, 1, False, False, 3, 7],
"stage2": [320, 224, 640, 2, True, False, 3, 7],
"stage3": [640, 256, 960, 3, True, False, 3, 7],
"stage4": [960, 288, 1280, 2, True, False, 3, 7],
},
# PP-HGNetv2
hgnetv2_b0={
"stem_type": 'v2',
"stem_chs": [16, 16],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [16, 16, 64, 1, False, False, 3, 3],
"stage2": [64, 32, 256, 1, True, False, 3, 3],
"stage3": [256, 64, 512, 2, True, True, 5, 3],
"stage4": [512, 128, 1024, 1, True, True, 5, 3],
},
hgnetv2_b1={
"stem_type": 'v2',
"stem_chs": [24, 32],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [32, 32, 64, 1, False, False, 3, 3],
"stage2": [64, 48, 256, 1, True, False, 3, 3],
"stage3": [256, 96, 512, 2, True, True, 5, 3],
"stage4": [512, 192, 1024, 1, True, True, 5, 3],
},
hgnetv2_b2={
"stem_type": 'v2',
"stem_chs": [24, 32],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [32, 32, 96, 1, False, False, 3, 4],
"stage2": [96, 64, 384, 1, True, False, 3, 4],
"stage3": [384, 128, 768, 3, True, True, 5, 4],
"stage4": [768, 256, 1536, 1, True, True, 5, 4],
},
hgnetv2_b3={
"stem_type": 'v2',
"stem_chs": [24, 32],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [32, 32, 128, 1, False, False, 3, 5],
"stage2": [128, 64, 512, 1, True, False, 3, 5],
"stage3": [512, 128, 1024, 3, True, True, 5, 5],
"stage4": [1024, 256, 2048, 1, True, True, 5, 5],
},
hgnetv2_b4={
"stem_type": 'v2',
"stem_chs": [32, 48],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [48, 48, 128, 1, False, False, 3, 6],
"stage2": [128, 96, 512, 1, True, False, 3, 6],
"stage3": [512, 192, 1024, 3, True, True, 5, 6],
"stage4": [1024, 384, 2048, 1, True, True, 5, 6],
},
hgnetv2_b5={
"stem_type": 'v2',
"stem_chs": [32, 64],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [64, 64, 128, 1, False, False, 3, 6],
"stage2": [128, 128, 512, 2, True, False, 3, 6],
"stage3": [512, 256, 1024, 5, True, True, 5, 6],
"stage4": [1024, 512, 2048, 2, True, True, 5, 6],
},
hgnetv2_b6={
"stem_type": 'v2',
"stem_chs": [48, 96],
# in_chs, mid_chs, out_chs, blocks, downsample, light_block, kernel_size, layer_num
"stage1": [96, 96, 192, 2, False, False, 3, 6],
"stage2": [192, 192, 512, 3, True, False, 3, 6],
"stage3": [512, 384, 1024, 6, True, True, 5, 6],
"stage4": [1024, 768, 2048, 3, True, True, 5, 6],
},
)
def _create_hgnet(variant, pretrained=False, **kwargs):
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
return build_model_with_cfg(
HighPerfGpuNet,
variant,
pretrained,
model_cfg=model_cfgs[variant],
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.965, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'classifier': 'head.fc', 'first_conv': 'stem.stem1.conv',
'test_crop_pct': 1.0, 'test_input_size': (3, 288, 288),
**kwargs,
}
default_cfgs = generate_default_cfgs({
'hgnet_tiny.paddle_in1k': _cfg(
first_conv='stem.stem.0.conv',
hf_hub_id='timm/'),
'hgnet_tiny.ssld_in1k': _cfg(
first_conv='stem.stem.0.conv',
hf_hub_id='timm/'),
'hgnet_small.paddle_in1k': _cfg(
first_conv='stem.stem.0.conv',
hf_hub_id='timm/'),
'hgnet_small.ssld_in1k': _cfg(
first_conv='stem.stem.0.conv',
hf_hub_id='timm/'),
'hgnet_base.ssld_in1k': _cfg(
first_conv='stem.stem.0.conv',
hf_hub_id='timm/'),
'hgnetv2_b0.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b0.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b1.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b1.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b2.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b2.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b3.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b3.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b4.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b4.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b5.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b5.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b6.ssld_stage2_ft_in1k': _cfg(
hf_hub_id='timm/'),
'hgnetv2_b6.ssld_stage1_in22k_in1k': _cfg(
hf_hub_id='timm/'),
})
@register_model
def hgnet_tiny(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnet_tiny', pretrained=pretrained, **kwargs)
@register_model
def hgnet_small(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnet_small', pretrained=pretrained, **kwargs)
@register_model
def hgnet_base(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnet_base', pretrained=pretrained, **kwargs)
@register_model
def hgnetv2_b0(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b0', pretrained=pretrained, use_lab=True, **kwargs)
@register_model
def hgnetv2_b1(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b1', pretrained=pretrained, use_lab=True, **kwargs)
@register_model
def hgnetv2_b2(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b2', pretrained=pretrained, use_lab=True, **kwargs)
@register_model
def hgnetv2_b3(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b3', pretrained=pretrained, use_lab=True, **kwargs)
@register_model
def hgnetv2_b4(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b4', pretrained=pretrained, **kwargs)
@register_model
def hgnetv2_b5(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b5', pretrained=pretrained, **kwargs)
@register_model
def hgnetv2_b6(pretrained=False, **kwargs) -> HighPerfGpuNet:
return _create_hgnet('hgnetv2_b6', pretrained=pretrained, **kwargs)