|
""" EVA |
|
|
|
EVA from https://github.com/baaivision/EVA , paper: https://arxiv.org/abs/2211.07636 |
|
|
|
@article{EVA, |
|
title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale}, |
|
author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang, |
|
Tiejun and Wang, Xinlong and Cao, Yue}, |
|
journal={arXiv preprint arXiv:2211.07636}, |
|
year={2022} |
|
} |
|
|
|
EVA-02: A Visual Representation for Neon Genesis - https://arxiv.org/abs/2303.11331 |
|
@article{EVA02, |
|
title={EVA-02: A Visual Representation for Neon Genesis}, |
|
author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue}, |
|
journal={arXiv preprint arXiv:2303.11331}, |
|
year={2023} |
|
} |
|
|
|
This file contains EVA & EVA02 model implementations evolved from BEiT, additional models in vision_transformer.py. |
|
|
|
Modifications by / Copyright 2023 Ross Wightman, original copyrights below |
|
""" |
|
|
|
|
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, OPENAI_CLIP_MEAN, OPENAI_CLIP_STD |
|
from timm.layers import PatchEmbed, Mlp, GluMlp, SwiGLU, LayerNorm, DropPath, PatchDropout, RotaryEmbeddingCat, \ |
|
apply_rot_embed_cat, apply_keep_indices_nlc, trunc_normal_, resample_patch_embed, resample_abs_pos_embed, \ |
|
to_2tuple, use_fused_attn |
|
|
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._registry import generate_default_cfgs, register_model |
|
|
|
__all__ = ['Eva'] |
|
|
|
|
|
class EvaAttention(nn.Module): |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = True, |
|
qkv_fused: bool = True, |
|
num_prefix_tokens: int = 1, |
|
qkv_bias_separate: bool = False, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0., |
|
attn_head_dim: Optional[int] = None, |
|
norm_layer: Optional[Callable] = None, |
|
): |
|
""" |
|
|
|
Args: |
|
dim: |
|
num_heads: |
|
qkv_bias: |
|
qkv_fused: |
|
attn_drop: |
|
proj_drop: |
|
attn_head_dim: |
|
norm_layer: |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.num_prefix_tokens = num_prefix_tokens |
|
self.fused_attn = use_fused_attn() |
|
self.qkv_bias_separate = qkv_bias_separate |
|
|
|
if qkv_fused: |
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
self.q_proj = self.k_proj = self.v_proj = None |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = self.k_bias = self.v_bias = None |
|
else: |
|
self.q_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias) |
|
self.k_proj = nn.Linear(dim, all_head_dim, bias=False) |
|
self.v_proj = nn.Linear(dim, all_head_dim, bias=qkv_bias) |
|
self.qkv = None |
|
self.q_bias = self.k_bias = self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.norm = norm_layer(all_head_dim) if norm_layer is not None else nn.Identity() |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward( |
|
self, |
|
x, |
|
rope: Optional[torch.Tensor] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
): |
|
B, N, C = x.shape |
|
|
|
if self.qkv is not None: |
|
if self.q_bias is None: |
|
qkv = self.qkv(x) |
|
else: |
|
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) |
|
if self.qkv_bias_separate: |
|
qkv = self.qkv(x) |
|
qkv += qkv_bias |
|
else: |
|
qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
else: |
|
q = self.q_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) |
|
k = self.k_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) |
|
v = self.v_proj(x).reshape(B, N, self.num_heads, -1).transpose(1, 2) |
|
|
|
if rope is not None: |
|
npt = self.num_prefix_tokens |
|
q = torch.cat([q[:, :, :npt, :], apply_rot_embed_cat(q[:, :, npt:, :], rope)], dim=2).type_as(v) |
|
k = torch.cat([k[:, :, :npt, :], apply_rot_embed_cat(k[:, :, npt:, :], rope)], dim=2).type_as(v) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=attn_mask, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(torch.bool) |
|
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) |
|
attn = attn.softmax(dim=-1) |
|
|
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.norm(x) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class EvaBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
qkv_bias: bool = True, |
|
qkv_fused: bool = True, |
|
mlp_ratio: float = 4., |
|
swiglu_mlp: bool = False, |
|
scale_mlp: bool = False, |
|
scale_attn_inner: bool = False, |
|
num_prefix_tokens: int = 1, |
|
proj_drop: float = 0., |
|
attn_drop: float = 0., |
|
drop_path: float = 0., |
|
init_values: Optional[float] = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
attn_head_dim: Optional[int] = None, |
|
): |
|
""" |
|
|
|
Args: |
|
dim: |
|
num_heads: |
|
qkv_bias: |
|
qkv_fused: |
|
mlp_ratio: |
|
swiglu_mlp: |
|
scale_mlp: |
|
scale_attn_inner: |
|
proj_drop: |
|
attn_drop: |
|
drop_path: |
|
init_values: |
|
act_layer: |
|
norm_layer: |
|
attn_head_dim: |
|
""" |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = EvaAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qkv_fused=qkv_fused, |
|
num_prefix_tokens=num_prefix_tokens, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
attn_head_dim=attn_head_dim, |
|
norm_layer=norm_layer if scale_attn_inner else None, |
|
) |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
hidden_features = int(dim * mlp_ratio) |
|
if swiglu_mlp: |
|
if scale_mlp: |
|
|
|
self.mlp = SwiGLU( |
|
in_features=dim, |
|
hidden_features=hidden_features, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
drop=proj_drop, |
|
) |
|
else: |
|
|
|
self.mlp = GluMlp( |
|
in_features=dim, |
|
hidden_features=hidden_features * 2, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
act_layer=nn.SiLU, |
|
gate_last=False, |
|
drop=proj_drop, |
|
) |
|
else: |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=hidden_features, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
drop=proj_drop, |
|
) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) if init_values is not None else None |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path1(self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) |
|
x = x + self.drop_path2(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)) |
|
x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class EvaBlockPostNorm(nn.Module): |
|
""" EVA block w/ post-norm and support for swiglu, MLP norm scale, ROPE. """ |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
qkv_bias: bool = True, |
|
qkv_fused: bool = True, |
|
mlp_ratio: float = 4., |
|
swiglu_mlp: bool = False, |
|
scale_mlp: bool = False, |
|
scale_attn_inner: bool = False, |
|
num_prefix_tokens: int = 1, |
|
proj_drop: float = 0., |
|
attn_drop: float = 0., |
|
drop_path: float = 0., |
|
init_values: Optional[float] = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = nn.LayerNorm, |
|
attn_head_dim: Optional[int] = None, |
|
): |
|
""" |
|
|
|
Args: |
|
dim: |
|
num_heads: |
|
qkv_bias: |
|
qkv_fused: |
|
mlp_ratio: |
|
swiglu_mlp: |
|
scale_mlp: |
|
scale_attn_inner: |
|
proj_drop: |
|
attn_drop: |
|
drop_path: |
|
init_values: |
|
act_layer: |
|
norm_layer: |
|
attn_head_dim: |
|
""" |
|
super().__init__() |
|
self.attn = EvaAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qkv_fused=qkv_fused, |
|
num_prefix_tokens=num_prefix_tokens, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
attn_head_dim=attn_head_dim, |
|
norm_layer=norm_layer if scale_attn_inner else None, |
|
) |
|
self.norm1 = norm_layer(dim) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
hidden_features = int(dim * mlp_ratio) |
|
if swiglu_mlp: |
|
if scale_mlp: |
|
|
|
self.mlp = SwiGLU( |
|
in_features=dim, |
|
hidden_features=hidden_features, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
drop=proj_drop, |
|
) |
|
else: |
|
|
|
self.mlp = GluMlp( |
|
in_features=dim, |
|
hidden_features=hidden_features * 2, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
act_layer=nn.SiLU, |
|
gate_last=False, |
|
drop=proj_drop, |
|
) |
|
else: |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=hidden_features, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
drop=proj_drop, |
|
) |
|
self.norm2 = norm_layer(dim) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None): |
|
x = x + self.drop_path1(self.norm1(self.attn(x, rope=rope, attn_mask=attn_mask))) |
|
x = x + self.drop_path2(self.norm2(self.mlp(x))) |
|
return x |
|
|
|
|
|
class Eva(nn.Module): |
|
""" Eva Vision Transformer w/ Abs & Rotary Pos Embed |
|
|
|
This class implements the EVA and EVA02 models that were based on the BEiT ViT variant |
|
* EVA - abs pos embed, global avg pool |
|
* EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
patch_size: Union[int, Tuple[int, int]] = 16, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
embed_dim: int = 768, |
|
depth: int = 12, |
|
num_heads: int = 12, |
|
qkv_bias: bool = True, |
|
qkv_fused: bool = True, |
|
mlp_ratio: float = 4., |
|
swiglu_mlp: bool = False, |
|
scale_mlp: bool = False, |
|
scale_attn_inner: bool = False, |
|
drop_rate: float = 0., |
|
pos_drop_rate: float = 0., |
|
patch_drop_rate: float = 0., |
|
proj_drop_rate: float = 0., |
|
attn_drop_rate: float = 0., |
|
drop_path_rate: float = 0., |
|
norm_layer: Callable = LayerNorm, |
|
init_values: Optional[float] = None, |
|
class_token: bool = True, |
|
num_reg_tokens: int = 0, |
|
use_abs_pos_emb: bool = True, |
|
use_rot_pos_emb: bool = False, |
|
use_post_norm: bool = False, |
|
dynamic_img_size: bool = False, |
|
dynamic_img_pad: bool = False, |
|
ref_feat_shape: Optional[Union[Tuple[int, int], int]] = None, |
|
head_init_scale: float = 0.001, |
|
): |
|
""" |
|
|
|
Args: |
|
img_size: |
|
patch_size: |
|
in_chans: |
|
num_classes: |
|
global_pool: |
|
embed_dim: |
|
depth: |
|
num_heads: |
|
qkv_bias: |
|
qkv_fused: |
|
mlp_ratio: |
|
swiglu_mlp: |
|
scale_mlp: |
|
scale_attn_inner: |
|
drop_rate: |
|
pos_drop_rate: |
|
proj_drop_rate: |
|
attn_drop_rate: |
|
drop_path_rate: |
|
norm_layer: |
|
init_values: |
|
class_token: |
|
use_abs_pos_emb: |
|
use_rot_pos_emb: |
|
use_post_norm: |
|
ref_feat_shape: |
|
head_init_scale: |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.num_features = self.head_hidden_size = self.embed_dim = embed_dim |
|
self.num_prefix_tokens = (1 if class_token else 0) + num_reg_tokens |
|
self.dynamic_img_size = dynamic_img_size |
|
self.grad_checkpointing = False |
|
|
|
embed_args = {} |
|
if dynamic_img_size: |
|
|
|
embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
dynamic_img_pad=dynamic_img_pad, |
|
**embed_args, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None |
|
self.reg_token = nn.Parameter(torch.zeros(1, num_reg_tokens, embed_dim)) if num_reg_tokens else None |
|
self.cls_embed = class_token and self.reg_token is None |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, num_patches + self.num_prefix_tokens, embed_dim)) if use_abs_pos_emb else None |
|
self.pos_drop = nn.Dropout(p=pos_drop_rate) |
|
if patch_drop_rate > 0: |
|
self.patch_drop = PatchDropout( |
|
patch_drop_rate, |
|
num_prefix_tokens=self.num_prefix_tokens, |
|
return_indices=True, |
|
) |
|
else: |
|
self.patch_drop = None |
|
|
|
if use_rot_pos_emb: |
|
ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None |
|
self.rope = RotaryEmbeddingCat( |
|
embed_dim // num_heads, |
|
in_pixels=False, |
|
feat_shape=None if dynamic_img_size else self.patch_embed.grid_size, |
|
ref_feat_shape=ref_feat_shape, |
|
) |
|
else: |
|
self.rope = None |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
block_fn = EvaBlockPostNorm if use_post_norm else EvaBlock |
|
self.blocks = nn.ModuleList([ |
|
block_fn( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qkv_fused=qkv_fused, |
|
mlp_ratio=mlp_ratio, |
|
swiglu_mlp=swiglu_mlp, |
|
scale_mlp=scale_mlp, |
|
scale_attn_inner=scale_attn_inner, |
|
num_prefix_tokens=self.num_prefix_tokens, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
) |
|
for i in range(depth)]) |
|
self.feature_info = [ |
|
dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] |
|
|
|
use_fc_norm = self.global_pool == 'avg' |
|
self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) |
|
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
self.apply(self._init_weights) |
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
if self.cls_token is not None: |
|
trunc_normal_(self.cls_token, std=.02) |
|
if self.reg_token is not None: |
|
trunc_normal_(self.reg_token, std=.02) |
|
|
|
self.fix_init_weight() |
|
if isinstance(self.head, nn.Linear): |
|
trunc_normal_(self.head.weight, std=.02) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
nwd = {'pos_embed', 'cls_token'} |
|
return nwd |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^cls_token|pos_embed|patch_embed', |
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def _pos_embed(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
if self.dynamic_img_size: |
|
B, H, W, C = x.shape |
|
if self.pos_embed is not None: |
|
prev_grid_size = self.patch_embed.grid_size |
|
pos_embed = resample_abs_pos_embed( |
|
self.pos_embed, |
|
new_size=(H, W), |
|
old_size=prev_grid_size, |
|
num_prefix_tokens=self.num_prefix_tokens, |
|
) |
|
else: |
|
pos_embed = None |
|
x = x.view(B, -1, C) |
|
rot_pos_embed = self.rope.get_embed(shape=(H, W)) if self.rope is not None else None |
|
else: |
|
pos_embed = self.pos_embed |
|
rot_pos_embed = self.rope.get_embed() if self.rope is not None else None |
|
|
|
if self.cls_token is not None: |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
|
|
if pos_embed is not None: |
|
x = x + pos_embed |
|
|
|
if self.reg_token is not None: |
|
to_cat = [] |
|
if self.cls_token is not None: |
|
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) |
|
to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) |
|
x = torch.cat(to_cat + [x], dim=1) |
|
|
|
x = self.pos_drop(x) |
|
|
|
|
|
if self.patch_drop is not None: |
|
x, keep_indices = self.patch_drop(x) |
|
if rot_pos_embed is not None and keep_indices is not None: |
|
rot_pos_embed = apply_keep_indices_nlc(x, rot_pos_embed, keep_indices) |
|
return x, rot_pos_embed |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int]]] = None, |
|
return_prefix_tokens: bool = False, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if an int, if is a sequence, select by matching indices |
|
return_prefix_tokens: Return both prefix and spatial intermediate tokens |
|
norm: Apply norm layer to all intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
""" |
|
assert output_fmt in ('NCHW', 'NLC'), 'Output format for EVA-ViT features must be one of NCHW or NLC.' |
|
reshape = output_fmt == 'NCHW' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
|
|
|
|
B, _, height, width = x.shape |
|
x = self.patch_embed(x) |
|
x, rot_pos_embed = self._pos_embed(x) |
|
if torch.jit.is_scripting() or not stop_early: |
|
blocks = self.blocks |
|
else: |
|
blocks = self.blocks[:max_index + 1] |
|
for i, blk in enumerate(blocks): |
|
x = blk(x, rope=rot_pos_embed) |
|
if i in take_indices: |
|
intermediates.append(self.norm(x) if norm else x) |
|
|
|
|
|
if self.num_prefix_tokens: |
|
|
|
prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] |
|
intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] |
|
if reshape: |
|
|
|
H, W = self.patch_embed.dynamic_feat_size((height, width)) |
|
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] |
|
if not torch.jit.is_scripting() and return_prefix_tokens: |
|
|
|
intermediates = list(zip(intermediates, prefix_tokens)) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
x = self.norm(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
self.blocks = self.blocks[:max_index + 1] |
|
if prune_norm: |
|
self.norm = nn.Identity() |
|
if prune_head: |
|
self.fc_norm = nn.Identity() |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x, rot_pos_embed = self._pos_embed(x) |
|
for blk in self.blocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(blk, x, rope=rot_pos_embed) |
|
else: |
|
x = blk(x, rope=rot_pos_embed) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool: |
|
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] |
|
x = self.fc_norm(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn( |
|
state_dict, |
|
model, |
|
interpolation='bicubic', |
|
antialias=True, |
|
): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
state_dict = state_dict.get('model_ema', state_dict) |
|
state_dict = state_dict.get('model', state_dict) |
|
state_dict = state_dict.get('module', state_dict) |
|
state_dict = state_dict.get('state_dict', state_dict) |
|
|
|
if 'visual.trunk.pos_embed' in state_dict: |
|
prefix = 'visual.trunk.' |
|
elif 'visual.pos_embed' in state_dict: |
|
prefix = 'visual.' |
|
else: |
|
prefix = '' |
|
mim_weights = prefix + 'mask_token' in state_dict |
|
no_qkv = prefix + 'blocks.0.attn.q_proj.weight' in state_dict |
|
|
|
len_prefix = len(prefix) |
|
for k, v in state_dict.items(): |
|
if prefix: |
|
if k.startswith(prefix): |
|
k = k[len_prefix:] |
|
else: |
|
continue |
|
|
|
if 'rope' in k: |
|
|
|
continue |
|
|
|
if 'patch_embed.proj.weight' in k: |
|
_, _, H, W = model.patch_embed.proj.weight.shape |
|
if v.shape[-1] != W or v.shape[-2] != H: |
|
v = resample_patch_embed( |
|
v, |
|
(H, W), |
|
interpolation=interpolation, |
|
antialias=antialias, |
|
verbose=True, |
|
) |
|
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: |
|
|
|
num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1) |
|
v = resample_abs_pos_embed( |
|
v, |
|
new_size=model.patch_embed.grid_size, |
|
num_prefix_tokens=num_prefix_tokens, |
|
interpolation=interpolation, |
|
antialias=antialias, |
|
verbose=True, |
|
) |
|
|
|
k = k.replace('mlp.ffn_ln', 'mlp.norm') |
|
k = k.replace('attn.inner_attn_ln', 'attn.norm') |
|
k = k.replace('mlp.w12', 'mlp.fc1') |
|
k = k.replace('mlp.w1', 'mlp.fc1_g') |
|
k = k.replace('mlp.w2', 'mlp.fc1_x') |
|
k = k.replace('mlp.w3', 'mlp.fc2') |
|
if no_qkv: |
|
k = k.replace('q_bias', 'q_proj.bias') |
|
k = k.replace('v_bias', 'v_proj.bias') |
|
|
|
if mim_weights and k in ('mask_token', 'lm_head.weight', 'lm_head.bias', 'norm.weight', 'norm.bias'): |
|
if k == 'norm.weight' or k == 'norm.bias': |
|
|
|
k = k.replace('norm', 'fc_norm') |
|
else: |
|
|
|
continue |
|
|
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
def _create_eva(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', 3) |
|
model = build_model_with_cfg( |
|
Eva, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': OPENAI_CLIP_MEAN, 'std': OPENAI_CLIP_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
'license': 'mit', **kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
|
|
|
|
'eva_giant_patch14_224.clip_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
), |
|
'eva_giant_patch14_336.clip_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), |
|
|
|
|
|
'eva_giant_patch14_336.m30m_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, |
|
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'), |
|
'eva_giant_patch14_560.m30m_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, |
|
input_size=(3, 560, 560), crop_pct=1.0, crop_mode='squash'), |
|
|
|
|
|
'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', |
|
), |
|
'eva02_large_patch14_448.mim_in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', |
|
), |
|
'eva02_large_patch14_448.mim_m38m_ft_in22k_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', |
|
), |
|
|
|
|
|
'eva02_tiny_patch14_336.mim_in22k_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 336, 336), crop_pct=1.0, |
|
), |
|
'eva02_small_patch14_336.mim_in22k_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 336, 336), crop_pct=1.0, |
|
), |
|
'eva02_base_patch14_448.mim_in22k_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, |
|
), |
|
'eva02_large_patch14_448.mim_in22k_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, |
|
), |
|
'eva02_large_patch14_448.mim_m38m_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, |
|
), |
|
|
|
|
|
'eva02_base_patch14_448.mim_in22k_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, |
|
), |
|
'eva02_large_patch14_448.mim_in22k_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, |
|
), |
|
'eva02_large_patch14_448.mim_m38m_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 448, 448), crop_pct=1.0, crop_mode='squash', num_classes=21841, |
|
), |
|
|
|
|
|
'eva02_tiny_patch14_224.mim_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=0, |
|
), |
|
'eva02_small_patch14_224.mim_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=0, |
|
), |
|
'eva02_base_patch14_224.mim_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=0, |
|
), |
|
'eva02_large_patch14_224.mim_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=0, |
|
), |
|
'eva02_large_patch14_224.mim_m38m': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=0, |
|
), |
|
|
|
|
|
'eva_giant_patch14_clip_224.laion400m': _cfg( |
|
|
|
hf_hub_id='timm/eva_giant_patch14_clip_224.laion400m_s11b_b41k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
num_classes=1024, |
|
), |
|
'eva_giant_patch14_clip_224.merged2b': _cfg( |
|
|
|
hf_hub_id='timm/eva_giant_patch14_plus_clip_224.merged2b_s11b_b114k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
num_classes=1024, |
|
), |
|
'eva02_base_patch16_clip_224.merged2b': _cfg( |
|
|
|
hf_hub_id='timm/eva02_base_patch16_clip_224.merged2b_s8b_b131k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
num_classes=512, |
|
), |
|
'eva02_large_patch14_clip_224.merged2b': _cfg( |
|
|
|
hf_hub_id='timm/eva02_large_patch14_clip_224.merged2b_s4b_b131k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
num_classes=768, |
|
), |
|
'eva02_large_patch14_clip_336.merged2b': _cfg( |
|
|
|
hf_hub_id='timm/eva02_large_patch14_clip_336.merged2b_s6b_b61k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
input_size=(3, 336, 336), crop_pct=1.0, |
|
num_classes=768, |
|
), |
|
'eva02_enormous_patch14_clip_224.laion2b': _cfg( |
|
|
|
hf_hub_id='timm/eva02_enormous_patch14_clip_224.laion2b_s4b_b115k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
num_classes=1024, |
|
), |
|
'eva02_enormous_patch14_clip_224.laion2b_plus': _cfg( |
|
|
|
hf_hub_id='timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k', |
|
hf_hub_filename='open_clip_pytorch_model.bin', |
|
num_classes=1024, |
|
), |
|
'eva02_enormous_patch14_clip_224.pretrain': _cfg( |
|
|
|
num_classes=0, |
|
), |
|
|
|
'vit_medium_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) |
|
), |
|
'vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) |
|
), |
|
'vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
), |
|
'vit_base_patch16_rope_reg1_gap_256.sbb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
input_size=(3, 256, 256), crop_pct=0.95, |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) |
|
), |
|
}) |
|
|
|
|
|
@register_model |
|
def eva_giant_patch14_224(pretrained=False, **kwargs) -> Eva: |
|
""" EVA-g model https://arxiv.org/abs/2211.07636 """ |
|
model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) |
|
model = _create_eva('eva_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva_giant_patch14_336(pretrained=False, **kwargs) -> Eva: |
|
""" EVA-g model https://arxiv.org/abs/2211.07636 """ |
|
model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) |
|
model = _create_eva('eva_giant_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva_giant_patch14_560(pretrained=False, **kwargs) -> Eva: |
|
""" EVA-g model https://arxiv.org/abs/2211.07636 """ |
|
model_args = dict(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408) |
|
model = _create_eva('eva_giant_patch14_560', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_tiny_patch14_224(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=14, |
|
embed_dim=192, |
|
depth=12, |
|
num_heads=3, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_small_patch14_224(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=14, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_small_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_base_patch14_224(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=14, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
qkv_fused=False, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_large_patch14_224(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=14, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4 * 2 / 3, |
|
qkv_fused=False, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_tiny_patch14_336(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=336, |
|
patch_size=14, |
|
embed_dim=192, |
|
depth=12, |
|
num_heads=3, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_tiny_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_small_patch14_336(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=336, |
|
patch_size=14, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_small_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_base_patch14_448(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=448, |
|
patch_size=14, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
qkv_fused=False, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_base_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_large_patch14_448(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=448, |
|
patch_size=14, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4 * 2 / 3, |
|
qkv_fused=False, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('eva02_large_patch14_448', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva_giant_patch14_clip_224(pretrained=False, **kwargs) -> Eva: |
|
""" EVA-g CLIP model (only difference from non-CLIP is the pooling) """ |
|
model_args = dict( |
|
patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, |
|
global_pool=kwargs.pop('global_pool', 'token')) |
|
model = _create_eva('eva_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_base_patch16_clip_224(pretrained=False, **kwargs) -> Eva: |
|
""" A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_base """ |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
qkv_fused=False, |
|
mlp_ratio=4 * 2 / 3, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
scale_attn_inner=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
global_pool=kwargs.pop('global_pool', 'token'), |
|
) |
|
model = _create_eva('eva02_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_large_patch14_clip_224(pretrained=False, **kwargs) -> Eva: |
|
""" A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """ |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=14, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4 * 2 / 3, |
|
qkv_fused=False, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
scale_attn_inner=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
global_pool=kwargs.pop('global_pool', 'token'), |
|
) |
|
model = _create_eva('eva02_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_large_patch14_clip_336(pretrained=False, **kwargs) -> Eva: |
|
""" A EVA-CLIP specific variant that adds additional attn scale layernorm to eva02_large """ |
|
model_args = dict( |
|
img_size=336, |
|
patch_size=14, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4 * 2 / 3, |
|
qkv_fused=False, |
|
swiglu_mlp=True, |
|
scale_mlp=True, |
|
scale_attn_inner=True, |
|
use_rot_pos_emb=True, |
|
ref_feat_shape=(16, 16), |
|
global_pool=kwargs.pop('global_pool', 'token'), |
|
) |
|
model = _create_eva('eva02_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eva02_enormous_patch14_clip_224(pretrained=False, **kwargs) -> Eva: |
|
""" A EVA-CLIP specific variant that uses residual post-norm in blocks """ |
|
model_args = dict( |
|
img_size=224, |
|
patch_size=14, |
|
embed_dim=1792, |
|
depth=64, |
|
num_heads=16, |
|
mlp_ratio=15360 / 1792, |
|
use_post_norm=True, |
|
global_pool=kwargs.pop('global_pool', 'token'), |
|
) |
|
model = _create_eva('eva02_enormous_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_medium_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=256, |
|
patch_size=16, |
|
embed_dim=512, |
|
depth=12, |
|
num_heads=8, |
|
qkv_fused=True, |
|
qkv_bias=True, |
|
init_values=1e-5, |
|
class_token=False, |
|
num_reg_tokens=1, |
|
use_rot_pos_emb=True, |
|
use_abs_pos_emb=False, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('vit_medium_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_mediumd_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=256, |
|
patch_size=16, |
|
embed_dim=512, |
|
depth=20, |
|
num_heads=8, |
|
qkv_fused=True, |
|
qkv_bias=False, |
|
init_values=1e-5, |
|
class_token=False, |
|
num_reg_tokens=1, |
|
use_rot_pos_emb=True, |
|
use_abs_pos_emb=False, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('vit_mediumd_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_betwixt_patch16_rope_reg4_gap_256(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=256, |
|
patch_size=16, |
|
embed_dim=640, |
|
depth=12, |
|
num_heads=10, |
|
qkv_fused=True, |
|
qkv_bias=True, |
|
init_values=1e-5, |
|
class_token=False, |
|
num_reg_tokens=4, |
|
use_rot_pos_emb=True, |
|
use_abs_pos_emb=False, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('vit_betwixt_patch16_rope_reg4_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def vit_base_patch16_rope_reg1_gap_256(pretrained=False, **kwargs) -> Eva: |
|
model_args = dict( |
|
img_size=256, |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
qkv_fused=True, |
|
qkv_bias=True, |
|
init_values=1e-5, |
|
class_token=False, |
|
num_reg_tokens=1, |
|
use_rot_pos_emb=True, |
|
use_abs_pos_emb=False, |
|
ref_feat_shape=(16, 16), |
|
) |
|
model = _create_eva('vit_base_patch16_rope_reg1_gap_256', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|