ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/models
/efficientvit_mit.py
""" EfficientViT (by MIT Song Han's Lab) | |
Paper: `Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition` | |
- https://arxiv.org/abs/2205.14756 | |
Adapted from official impl at https://github.com/mit-han-lab/efficientvit | |
""" | |
__all__ = ['EfficientVit', 'EfficientVitLarge'] | |
from typing import List, Optional | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from timm.layers import SelectAdaptivePool2d, create_conv2d, GELUTanh | |
from ._builder import build_model_with_cfg | |
from ._features_fx import register_notrace_module | |
from ._manipulate import checkpoint_seq | |
from ._registry import register_model, generate_default_cfgs | |
def val2list(x: list or tuple or any, repeat_time=1): | |
if isinstance(x, (list, tuple)): | |
return list(x) | |
return [x for _ in range(repeat_time)] | |
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1): | |
# repeat elements if necessary | |
x = val2list(x) | |
if len(x) > 0: | |
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] | |
return tuple(x) | |
def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: | |
if isinstance(kernel_size, tuple): | |
return tuple([get_same_padding(ks) for ks in kernel_size]) | |
else: | |
assert kernel_size % 2 > 0, "kernel size should be odd number" | |
return kernel_size // 2 | |
class ConvNormAct(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
dilation=1, | |
groups=1, | |
bias=False, | |
dropout=0., | |
norm_layer=nn.BatchNorm2d, | |
act_layer=nn.ReLU, | |
): | |
super(ConvNormAct, self).__init__() | |
self.dropout = nn.Dropout(dropout, inplace=False) | |
self.conv = create_conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
) | |
self.norm = norm_layer(num_features=out_channels) if norm_layer else nn.Identity() | |
self.act = act_layer(inplace=True) if act_layer is not None else nn.Identity() | |
def forward(self, x): | |
x = self.dropout(x) | |
x = self.conv(x) | |
x = self.norm(x) | |
x = self.act(x) | |
return x | |
class DSConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
use_bias=False, | |
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), | |
act_layer=(nn.ReLU6, None), | |
): | |
super(DSConv, self).__init__() | |
use_bias = val2tuple(use_bias, 2) | |
norm_layer = val2tuple(norm_layer, 2) | |
act_layer = val2tuple(act_layer, 2) | |
self.depth_conv = ConvNormAct( | |
in_channels, | |
in_channels, | |
kernel_size, | |
stride, | |
groups=in_channels, | |
norm_layer=norm_layer[0], | |
act_layer=act_layer[0], | |
bias=use_bias[0], | |
) | |
self.point_conv = ConvNormAct( | |
in_channels, | |
out_channels, | |
1, | |
norm_layer=norm_layer[1], | |
act_layer=act_layer[1], | |
bias=use_bias[1], | |
) | |
def forward(self, x): | |
x = self.depth_conv(x) | |
x = self.point_conv(x) | |
return x | |
class ConvBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=1, | |
use_bias=False, | |
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), | |
act_layer=(nn.ReLU6, None), | |
): | |
super(ConvBlock, self).__init__() | |
use_bias = val2tuple(use_bias, 2) | |
norm_layer = val2tuple(norm_layer, 2) | |
act_layer = val2tuple(act_layer, 2) | |
mid_channels = mid_channels or round(in_channels * expand_ratio) | |
self.conv1 = ConvNormAct( | |
in_channels, | |
mid_channels, | |
kernel_size, | |
stride, | |
norm_layer=norm_layer[0], | |
act_layer=act_layer[0], | |
bias=use_bias[0], | |
) | |
self.conv2 = ConvNormAct( | |
mid_channels, | |
out_channels, | |
kernel_size, | |
1, | |
norm_layer=norm_layer[1], | |
act_layer=act_layer[1], | |
bias=use_bias[1], | |
) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.conv2(x) | |
return x | |
class MBConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=6, | |
use_bias=False, | |
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d, nn.BatchNorm2d), | |
act_layer=(nn.ReLU6, nn.ReLU6, None), | |
): | |
super(MBConv, self).__init__() | |
use_bias = val2tuple(use_bias, 3) | |
norm_layer = val2tuple(norm_layer, 3) | |
act_layer = val2tuple(act_layer, 3) | |
mid_channels = mid_channels or round(in_channels * expand_ratio) | |
self.inverted_conv = ConvNormAct( | |
in_channels, | |
mid_channels, | |
1, | |
stride=1, | |
norm_layer=norm_layer[0], | |
act_layer=act_layer[0], | |
bias=use_bias[0], | |
) | |
self.depth_conv = ConvNormAct( | |
mid_channels, | |
mid_channels, | |
kernel_size, | |
stride=stride, | |
groups=mid_channels, | |
norm_layer=norm_layer[1], | |
act_layer=act_layer[1], | |
bias=use_bias[1], | |
) | |
self.point_conv = ConvNormAct( | |
mid_channels, | |
out_channels, | |
1, | |
norm_layer=norm_layer[2], | |
act_layer=act_layer[2], | |
bias=use_bias[2], | |
) | |
def forward(self, x): | |
x = self.inverted_conv(x) | |
x = self.depth_conv(x) | |
x = self.point_conv(x) | |
return x | |
class FusedMBConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=6, | |
groups=1, | |
use_bias=False, | |
norm_layer=(nn.BatchNorm2d, nn.BatchNorm2d), | |
act_layer=(nn.ReLU6, None), | |
): | |
super(FusedMBConv, self).__init__() | |
use_bias = val2tuple(use_bias, 2) | |
norm_layer = val2tuple(norm_layer, 2) | |
act_layer = val2tuple(act_layer, 2) | |
mid_channels = mid_channels or round(in_channels * expand_ratio) | |
self.spatial_conv = ConvNormAct( | |
in_channels, | |
mid_channels, | |
kernel_size, | |
stride=stride, | |
groups=groups, | |
norm_layer=norm_layer[0], | |
act_layer=act_layer[0], | |
bias=use_bias[0], | |
) | |
self.point_conv = ConvNormAct( | |
mid_channels, | |
out_channels, | |
1, | |
norm_layer=norm_layer[1], | |
act_layer=act_layer[1], | |
bias=use_bias[1], | |
) | |
def forward(self, x): | |
x = self.spatial_conv(x) | |
x = self.point_conv(x) | |
return x | |
class LiteMLA(nn.Module): | |
"""Lightweight multi-scale linear attention""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
heads: int or None = None, | |
heads_ratio: float = 1.0, | |
dim=8, | |
use_bias=False, | |
norm_layer=(None, nn.BatchNorm2d), | |
act_layer=(None, None), | |
kernel_func=nn.ReLU, | |
scales=(5,), | |
eps=1e-5, | |
): | |
super(LiteMLA, self).__init__() | |
self.eps = eps | |
heads = heads or int(in_channels // dim * heads_ratio) | |
total_dim = heads * dim | |
use_bias = val2tuple(use_bias, 2) | |
norm_layer = val2tuple(norm_layer, 2) | |
act_layer = val2tuple(act_layer, 2) | |
self.dim = dim | |
self.qkv = ConvNormAct( | |
in_channels, | |
3 * total_dim, | |
1, | |
bias=use_bias[0], | |
norm_layer=norm_layer[0], | |
act_layer=act_layer[0], | |
) | |
self.aggreg = nn.ModuleList([ | |
nn.Sequential( | |
nn.Conv2d( | |
3 * total_dim, | |
3 * total_dim, | |
scale, | |
padding=get_same_padding(scale), | |
groups=3 * total_dim, | |
bias=use_bias[0], | |
), | |
nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0]), | |
) | |
for scale in scales | |
]) | |
self.kernel_func = kernel_func(inplace=False) | |
self.proj = ConvNormAct( | |
total_dim * (1 + len(scales)), | |
out_channels, | |
1, | |
bias=use_bias[1], | |
norm_layer=norm_layer[1], | |
act_layer=act_layer[1], | |
) | |
def _attn(self, q, k, v): | |
dtype = v.dtype | |
q, k, v = q.float(), k.float(), v.float() | |
kv = k.transpose(-1, -2) @ v | |
out = q @ kv | |
out = out[..., :-1] / (out[..., -1:] + self.eps) | |
return out.to(dtype) | |
def forward(self, x): | |
B, _, H, W = x.shape | |
# generate multi-scale q, k, v | |
qkv = self.qkv(x) | |
multi_scale_qkv = [qkv] | |
for op in self.aggreg: | |
multi_scale_qkv.append(op(qkv)) | |
multi_scale_qkv = torch.cat(multi_scale_qkv, dim=1) | |
multi_scale_qkv = multi_scale_qkv.reshape(B, -1, 3 * self.dim, H * W).transpose(-1, -2) | |
q, k, v = multi_scale_qkv.chunk(3, dim=-1) | |
# lightweight global attention | |
q = self.kernel_func(q) | |
k = self.kernel_func(k) | |
v = F.pad(v, (0, 1), mode="constant", value=1.) | |
if not torch.jit.is_scripting(): | |
with torch.autocast(device_type=v.device.type, enabled=False): | |
out = self._attn(q, k, v) | |
else: | |
out = self._attn(q, k, v) | |
# final projection | |
out = out.transpose(-1, -2).reshape(B, -1, H, W) | |
out = self.proj(out) | |
return out | |
register_notrace_module(LiteMLA) | |
class EfficientVitBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
heads_ratio=1.0, | |
head_dim=32, | |
expand_ratio=4, | |
norm_layer=nn.BatchNorm2d, | |
act_layer=nn.Hardswish, | |
): | |
super(EfficientVitBlock, self).__init__() | |
self.context_module = ResidualBlock( | |
LiteMLA( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
heads_ratio=heads_ratio, | |
dim=head_dim, | |
norm_layer=(None, norm_layer), | |
), | |
nn.Identity(), | |
) | |
self.local_module = ResidualBlock( | |
MBConv( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
expand_ratio=expand_ratio, | |
use_bias=(True, True, False), | |
norm_layer=(None, None, norm_layer), | |
act_layer=(act_layer, act_layer, None), | |
), | |
nn.Identity(), | |
) | |
def forward(self, x): | |
x = self.context_module(x) | |
x = self.local_module(x) | |
return x | |
class ResidualBlock(nn.Module): | |
def __init__( | |
self, | |
main: Optional[nn.Module], | |
shortcut: Optional[nn.Module] = None, | |
pre_norm: Optional[nn.Module] = None, | |
): | |
super(ResidualBlock, self).__init__() | |
self.pre_norm = pre_norm if pre_norm is not None else nn.Identity() | |
self.main = main | |
self.shortcut = shortcut | |
def forward(self, x): | |
res = self.main(self.pre_norm(x)) | |
if self.shortcut is not None: | |
res = res + self.shortcut(x) | |
return res | |
def build_local_block( | |
in_channels: int, | |
out_channels: int, | |
stride: int, | |
expand_ratio: float, | |
norm_layer: str, | |
act_layer: str, | |
fewer_norm: bool = False, | |
block_type: str = "default", | |
): | |
assert block_type in ["default", "large", "fused"] | |
if expand_ratio == 1: | |
if block_type == "default": | |
block = DSConv( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
use_bias=(True, False) if fewer_norm else False, | |
norm_layer=(None, norm_layer) if fewer_norm else norm_layer, | |
act_layer=(act_layer, None), | |
) | |
else: | |
block = ConvBlock( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
use_bias=(True, False) if fewer_norm else False, | |
norm_layer=(None, norm_layer) if fewer_norm else norm_layer, | |
act_layer=(act_layer, None), | |
) | |
else: | |
if block_type == "default": | |
block = MBConv( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
expand_ratio=expand_ratio, | |
use_bias=(True, True, False) if fewer_norm else False, | |
norm_layer=(None, None, norm_layer) if fewer_norm else norm_layer, | |
act_layer=(act_layer, act_layer, None), | |
) | |
else: | |
block = FusedMBConv( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=stride, | |
expand_ratio=expand_ratio, | |
use_bias=(True, False) if fewer_norm else False, | |
norm_layer=(None, norm_layer) if fewer_norm else norm_layer, | |
act_layer=(act_layer, None), | |
) | |
return block | |
class Stem(nn.Sequential): | |
def __init__(self, in_chs, out_chs, depth, norm_layer, act_layer, block_type='default'): | |
super().__init__() | |
self.stride = 2 | |
self.add_module( | |
'in_conv', | |
ConvNormAct( | |
in_chs, out_chs, | |
kernel_size=3, stride=2, norm_layer=norm_layer, act_layer=act_layer, | |
) | |
) | |
stem_block = 0 | |
for _ in range(depth): | |
self.add_module(f'res{stem_block}', ResidualBlock( | |
build_local_block( | |
in_channels=out_chs, | |
out_channels=out_chs, | |
stride=1, | |
expand_ratio=1, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
block_type=block_type, | |
), | |
nn.Identity(), | |
)) | |
stem_block += 1 | |
class EfficientVitStage(nn.Module): | |
def __init__( | |
self, | |
in_chs, | |
out_chs, | |
depth, | |
norm_layer, | |
act_layer, | |
expand_ratio, | |
head_dim, | |
vit_stage=False, | |
): | |
super(EfficientVitStage, self).__init__() | |
blocks = [ResidualBlock( | |
build_local_block( | |
in_channels=in_chs, | |
out_channels=out_chs, | |
stride=2, | |
expand_ratio=expand_ratio, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
fewer_norm=vit_stage, | |
), | |
None, | |
)] | |
in_chs = out_chs | |
if vit_stage: | |
# for stage 3, 4 | |
for _ in range(depth): | |
blocks.append( | |
EfficientVitBlock( | |
in_channels=in_chs, | |
head_dim=head_dim, | |
expand_ratio=expand_ratio, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
) | |
) | |
else: | |
# for stage 1, 2 | |
for i in range(1, depth): | |
blocks.append(ResidualBlock( | |
build_local_block( | |
in_channels=in_chs, | |
out_channels=out_chs, | |
stride=1, | |
expand_ratio=expand_ratio, | |
norm_layer=norm_layer, | |
act_layer=act_layer | |
), | |
nn.Identity(), | |
)) | |
self.blocks = nn.Sequential(*blocks) | |
def forward(self, x): | |
return self.blocks(x) | |
class EfficientVitLargeStage(nn.Module): | |
def __init__( | |
self, | |
in_chs, | |
out_chs, | |
depth, | |
norm_layer, | |
act_layer, | |
head_dim, | |
vit_stage=False, | |
fewer_norm=False, | |
): | |
super(EfficientVitLargeStage, self).__init__() | |
blocks = [ResidualBlock( | |
build_local_block( | |
in_channels=in_chs, | |
out_channels=out_chs, | |
stride=2, | |
expand_ratio=24 if vit_stage else 16, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
fewer_norm=vit_stage or fewer_norm, | |
block_type='default' if fewer_norm else 'fused', | |
), | |
None, | |
)] | |
in_chs = out_chs | |
if vit_stage: | |
# for stage 4 | |
for _ in range(depth): | |
blocks.append( | |
EfficientVitBlock( | |
in_channels=in_chs, | |
head_dim=head_dim, | |
expand_ratio=6, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
) | |
) | |
else: | |
# for stage 1, 2, 3 | |
for i in range(depth): | |
blocks.append(ResidualBlock( | |
build_local_block( | |
in_channels=in_chs, | |
out_channels=out_chs, | |
stride=1, | |
expand_ratio=4, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
fewer_norm=fewer_norm, | |
block_type='default' if fewer_norm else 'fused', | |
), | |
nn.Identity(), | |
)) | |
self.blocks = nn.Sequential(*blocks) | |
def forward(self, x): | |
return self.blocks(x) | |
class ClassifierHead(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
widths: List[int], | |
num_classes: int = 1000, | |
dropout: float = 0., | |
norm_layer=nn.BatchNorm2d, | |
act_layer=nn.Hardswish, | |
pool_type: str = 'avg', | |
norm_eps: float = 1e-5, | |
): | |
super(ClassifierHead, self).__init__() | |
self.widths = widths | |
self.num_features = widths[-1] | |
assert pool_type, 'Cannot disable pooling' | |
self.in_conv = ConvNormAct(in_channels, widths[0], 1, norm_layer=norm_layer, act_layer=act_layer) | |
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True) | |
self.classifier = nn.Sequential( | |
nn.Linear(widths[0], widths[1], bias=False), | |
nn.LayerNorm(widths[1], eps=norm_eps), | |
act_layer(inplace=True) if act_layer is not None else nn.Identity(), | |
nn.Dropout(dropout, inplace=False), | |
nn.Linear(widths[1], num_classes, bias=True) if num_classes > 0 else nn.Identity(), | |
) | |
def reset(self, num_classes: int, pool_type: Optional[str] = None): | |
if pool_type is not None: | |
assert pool_type, 'Cannot disable pooling' | |
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=True,) | |
if num_classes > 0: | |
self.classifier[-1] = nn.Linear(self.num_features, num_classes, bias=True) | |
else: | |
self.classifier[-1] = nn.Identity() | |
def forward(self, x, pre_logits: bool = False): | |
x = self.in_conv(x) | |
x = self.global_pool(x) | |
if pre_logits: | |
# cannot slice or iterate with torchscript so, this | |
x = self.classifier[0](x) | |
x = self.classifier[1](x) | |
x = self.classifier[2](x) | |
x = self.classifier[3](x) | |
else: | |
x = self.classifier(x) | |
return x | |
class EfficientVit(nn.Module): | |
def __init__( | |
self, | |
in_chans=3, | |
widths=(), | |
depths=(), | |
head_dim=32, | |
expand_ratio=4, | |
norm_layer=nn.BatchNorm2d, | |
act_layer=nn.Hardswish, | |
global_pool='avg', | |
head_widths=(), | |
drop_rate=0.0, | |
num_classes=1000, | |
): | |
super(EfficientVit, self).__init__() | |
self.grad_checkpointing = False | |
self.global_pool = global_pool | |
self.num_classes = num_classes | |
# input stem | |
self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer) | |
stride = self.stem.stride | |
# stages | |
self.feature_info = [] | |
self.stages = nn.Sequential() | |
in_channels = widths[0] | |
for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): | |
self.stages.append(EfficientVitStage( | |
in_channels, | |
w, | |
depth=d, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
expand_ratio=expand_ratio, | |
head_dim=head_dim, | |
vit_stage=i >= 2, | |
)) | |
stride *= 2 | |
in_channels = w | |
self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] | |
self.num_features = in_channels | |
self.head = ClassifierHead( | |
self.num_features, | |
widths=head_widths, | |
num_classes=num_classes, | |
dropout=drop_rate, | |
pool_type=self.global_pool, | |
) | |
self.head_hidden_size = self.head.num_features | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^stem', | |
blocks=r'^stages\.(\d+)' if coarse else [ | |
(r'^stages\.(\d+).downsample', (0,)), | |
(r'^stages\.(\d+)\.\w+\.(\d+)', None), | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self) -> nn.Module: | |
return self.head.classifier[-1] | |
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): | |
self.num_classes = num_classes | |
self.head.reset(num_classes, global_pool) | |
def forward_features(self, x): | |
x = self.stem(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.stages, x) | |
else: | |
x = self.stages(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
class EfficientVitLarge(nn.Module): | |
def __init__( | |
self, | |
in_chans=3, | |
widths=(), | |
depths=(), | |
head_dim=32, | |
norm_layer=nn.BatchNorm2d, | |
act_layer=GELUTanh, | |
global_pool='avg', | |
head_widths=(), | |
drop_rate=0.0, | |
num_classes=1000, | |
norm_eps=1e-7, | |
): | |
super(EfficientVitLarge, self).__init__() | |
self.grad_checkpointing = False | |
self.global_pool = global_pool | |
self.num_classes = num_classes | |
self.norm_eps = norm_eps | |
norm_layer = partial(norm_layer, eps=self.norm_eps) | |
# input stem | |
self.stem = Stem(in_chans, widths[0], depths[0], norm_layer, act_layer, block_type='large') | |
stride = self.stem.stride | |
# stages | |
self.feature_info = [] | |
self.stages = nn.Sequential() | |
in_channels = widths[0] | |
for i, (w, d) in enumerate(zip(widths[1:], depths[1:])): | |
self.stages.append(EfficientVitLargeStage( | |
in_channels, | |
w, | |
depth=d, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
head_dim=head_dim, | |
vit_stage=i >= 3, | |
fewer_norm=i >= 2, | |
)) | |
stride *= 2 | |
in_channels = w | |
self.feature_info += [dict(num_chs=in_channels, reduction=stride, module=f'stages.{i}')] | |
self.num_features = in_channels | |
self.head = ClassifierHead( | |
self.num_features, | |
widths=head_widths, | |
num_classes=num_classes, | |
dropout=drop_rate, | |
pool_type=self.global_pool, | |
act_layer=act_layer, | |
norm_eps=self.norm_eps, | |
) | |
self.head_hidden_size = self.head.num_features | |
def group_matcher(self, coarse=False): | |
matcher = dict( | |
stem=r'^stem', | |
blocks=r'^stages\.(\d+)' if coarse else [ | |
(r'^stages\.(\d+).downsample', (0,)), | |
(r'^stages\.(\d+)\.\w+\.(\d+)', None), | |
] | |
) | |
return matcher | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self) -> nn.Module: | |
return self.head.classifier[-1] | |
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): | |
self.num_classes = num_classes | |
self.head.reset(num_classes, global_pool) | |
def forward_features(self, x): | |
x = self.stem(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.stages, x) | |
else: | |
x = self.stages(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, | |
'mean': IMAGENET_DEFAULT_MEAN, | |
'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'stem.in_conv.conv', | |
'classifier': 'head.classifier.4', | |
'crop_pct': 0.95, | |
'input_size': (3, 224, 224), | |
'pool_size': (7, 7), | |
**kwargs, | |
} | |
default_cfgs = generate_default_cfgs({ | |
'efficientvit_b0.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
), | |
'efficientvit_b1.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
), | |
'efficientvit_b1.r256_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, | |
), | |
'efficientvit_b1.r288_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, | |
), | |
'efficientvit_b2.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
), | |
'efficientvit_b2.r256_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, | |
), | |
'efficientvit_b2.r288_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, | |
), | |
'efficientvit_b3.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
), | |
'efficientvit_b3.r256_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, | |
), | |
'efficientvit_b3.r288_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, | |
), | |
'efficientvit_l1.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
crop_pct=1.0, | |
), | |
'efficientvit_l2.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
crop_pct=1.0, | |
), | |
'efficientvit_l2.r256_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, | |
), | |
'efficientvit_l2.r288_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=1.0, | |
), | |
'efficientvit_l2.r384_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, | |
), | |
'efficientvit_l3.r224_in1k': _cfg( | |
hf_hub_id='timm/', | |
crop_pct=1.0, | |
), | |
'efficientvit_l3.r256_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=1.0, | |
), | |
'efficientvit_l3.r320_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, | |
), | |
'efficientvit_l3.r384_in1k': _cfg( | |
hf_hub_id='timm/', | |
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, | |
), | |
# 'efficientvit_l0_sam.sam': _cfg( | |
# # hf_hub_id='timm/', | |
# input_size=(3, 512, 512), crop_pct=1.0, | |
# num_classes=0, | |
# ), | |
# 'efficientvit_l1_sam.sam': _cfg( | |
# # hf_hub_id='timm/', | |
# input_size=(3, 512, 512), crop_pct=1.0, | |
# num_classes=0, | |
# ), | |
# 'efficientvit_l2_sam.sam': _cfg( | |
# # hf_hub_id='timm/',f | |
# input_size=(3, 512, 512), crop_pct=1.0, | |
# num_classes=0, | |
# ), | |
}) | |
def _create_efficientvit(variant, pretrained=False, **kwargs): | |
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) | |
model = build_model_with_cfg( | |
EfficientVit, | |
variant, | |
pretrained, | |
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), | |
**kwargs | |
) | |
return model | |
def _create_efficientvit_large(variant, pretrained=False, **kwargs): | |
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) | |
model = build_model_with_cfg( | |
EfficientVitLarge, | |
variant, | |
pretrained, | |
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), | |
**kwargs | |
) | |
return model | |
def efficientvit_b0(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(8, 16, 32, 64, 128), depths=(1, 2, 2, 2, 2), head_dim=16, head_widths=(1024, 1280)) | |
return _create_efficientvit('efficientvit_b0', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def efficientvit_b1(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(16, 32, 64, 128, 256), depths=(1, 2, 3, 3, 4), head_dim=16, head_widths=(1536, 1600)) | |
return _create_efficientvit('efficientvit_b1', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def efficientvit_b2(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(24, 48, 96, 192, 384), depths=(1, 3, 4, 4, 6), head_dim=32, head_widths=(2304, 2560)) | |
return _create_efficientvit('efficientvit_b2', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def efficientvit_b3(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(32, 64, 128, 256, 512), depths=(1, 4, 6, 6, 9), head_dim=32, head_widths=(2304, 2560)) | |
return _create_efficientvit('efficientvit_b3', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def efficientvit_l1(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, head_widths=(3072, 3200)) | |
return _create_efficientvit_large('efficientvit_l1', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def efficientvit_l2(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(3072, 3200)) | |
return _create_efficientvit_large('efficientvit_l2', pretrained=pretrained, **dict(model_args, **kwargs)) | |
def efficientvit_l3(pretrained=False, **kwargs): | |
model_args = dict( | |
widths=(64, 128, 256, 512, 1024), depths=(1, 2, 2, 8, 8), head_dim=32, head_widths=(6144, 6400)) | |
return _create_efficientvit_large('efficientvit_l3', pretrained=pretrained, **dict(model_args, **kwargs)) | |
# FIXME will wait for v2 SAM models which are pending | |
# @register_model | |
# def efficientvit_l0_sam(pretrained=False, **kwargs): | |
# # only backbone for segment-anything-model weights | |
# model_args = dict( | |
# widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 4, 4), head_dim=32, num_classes=0, norm_eps=1e-6) | |
# return _create_efficientvit_large('efficientvit_l0_sam', pretrained=pretrained, **dict(model_args, **kwargs)) | |
# | |
# | |
# @register_model | |
# def efficientvit_l1_sam(pretrained=False, **kwargs): | |
# # only backbone for segment-anything-model weights | |
# model_args = dict( | |
# widths=(32, 64, 128, 256, 512), depths=(1, 1, 1, 6, 6), head_dim=32, num_classes=0, norm_eps=1e-6) | |
# return _create_efficientvit_large('efficientvit_l1_sam', pretrained=pretrained, **dict(model_args, **kwargs)) | |
# | |
# | |
# @register_model | |
# def efficientvit_l2_sam(pretrained=False, **kwargs): | |
# # only backbone for segment-anything-model weights | |
# model_args = dict( | |
# widths=(32, 64, 128, 256, 512), depths=(1, 2, 2, 8, 8), head_dim=32, num_classes=0, norm_eps=1e-6) | |
# return _create_efficientvit_large('efficientvit_l2_sam', pretrained=pretrained, **dict(model_args, **kwargs)) | |