|
"""Pytorch Densenet implementation w/ tweaks |
|
This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with |
|
fixed kwargs passthrough and addition of dynamic global avg/max pool. |
|
""" |
|
import re |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from torch.jit.annotations import List |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import MATCH_PREV_GROUP |
|
from ._registry import register_model, generate_default_cfgs, register_model_deprecations |
|
|
|
__all__ = ['DenseNet'] |
|
|
|
|
|
class DenseLayer(nn.Module): |
|
def __init__( |
|
self, |
|
num_input_features, |
|
growth_rate, |
|
bn_size, |
|
norm_layer=BatchNormAct2d, |
|
drop_rate=0., |
|
grad_checkpointing=False, |
|
): |
|
super(DenseLayer, self).__init__() |
|
self.add_module('norm1', norm_layer(num_input_features)), |
|
self.add_module('conv1', nn.Conv2d( |
|
num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), |
|
self.add_module('norm2', norm_layer(bn_size * growth_rate)), |
|
self.add_module('conv2', nn.Conv2d( |
|
bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), |
|
self.drop_rate = float(drop_rate) |
|
self.grad_checkpointing = grad_checkpointing |
|
|
|
def bottleneck_fn(self, xs): |
|
|
|
concated_features = torch.cat(xs, 1) |
|
bottleneck_output = self.conv1(self.norm1(concated_features)) |
|
return bottleneck_output |
|
|
|
|
|
def any_requires_grad(self, x): |
|
|
|
for tensor in x: |
|
if tensor.requires_grad: |
|
return True |
|
return False |
|
|
|
@torch.jit.unused |
|
def call_checkpoint_bottleneck(self, x): |
|
|
|
def closure(*xs): |
|
return self.bottleneck_fn(xs) |
|
|
|
return cp.checkpoint(closure, *x) |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
@torch.jit._overload_method |
|
def forward(self, x): |
|
|
|
pass |
|
|
|
|
|
|
|
def forward(self, x): |
|
if isinstance(x, torch.Tensor): |
|
prev_features = [x] |
|
else: |
|
prev_features = x |
|
|
|
if self.grad_checkpointing and self.any_requires_grad(prev_features): |
|
if torch.jit.is_scripting(): |
|
raise Exception("Memory Efficient not supported in JIT") |
|
bottleneck_output = self.call_checkpoint_bottleneck(prev_features) |
|
else: |
|
bottleneck_output = self.bottleneck_fn(prev_features) |
|
|
|
new_features = self.conv2(self.norm2(bottleneck_output)) |
|
if self.drop_rate > 0: |
|
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) |
|
return new_features |
|
|
|
|
|
class DenseBlock(nn.ModuleDict): |
|
_version = 2 |
|
|
|
def __init__( |
|
self, |
|
num_layers, |
|
num_input_features, |
|
bn_size, |
|
growth_rate, |
|
norm_layer=BatchNormAct2d, |
|
drop_rate=0., |
|
grad_checkpointing=False, |
|
): |
|
super(DenseBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = DenseLayer( |
|
num_input_features + i * growth_rate, |
|
growth_rate=growth_rate, |
|
bn_size=bn_size, |
|
norm_layer=norm_layer, |
|
drop_rate=drop_rate, |
|
grad_checkpointing=grad_checkpointing, |
|
) |
|
self.add_module('denselayer%d' % (i + 1), layer) |
|
|
|
def forward(self, init_features): |
|
features = [init_features] |
|
for name, layer in self.items(): |
|
new_features = layer(features) |
|
features.append(new_features) |
|
return torch.cat(features, 1) |
|
|
|
|
|
class DenseTransition(nn.Sequential): |
|
def __init__( |
|
self, |
|
num_input_features, |
|
num_output_features, |
|
norm_layer=BatchNormAct2d, |
|
aa_layer=None, |
|
): |
|
super(DenseTransition, self).__init__() |
|
self.add_module('norm', norm_layer(num_input_features)) |
|
self.add_module('conv', nn.Conv2d( |
|
num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) |
|
if aa_layer is not None: |
|
self.add_module('pool', aa_layer(num_output_features, stride=2)) |
|
else: |
|
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) |
|
|
|
|
|
class DenseNet(nn.Module): |
|
r"""Densenet-BC model class, based on |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ |
|
|
|
Args: |
|
growth_rate (int) - how many filters to add each layer (`k` in paper) |
|
block_config (list of 4 ints) - how many layers in each pooling block |
|
bn_size (int) - multiplicative factor for number of bottle neck layers |
|
(i.e. bn_size * k features in the bottleneck layer) |
|
drop_rate (float) - dropout rate before classifier layer |
|
proj_drop_rate (float) - dropout rate after each dense layer |
|
num_classes (int) - number of classification classes |
|
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, |
|
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
growth_rate=32, |
|
block_config=(6, 12, 24, 16), |
|
num_classes=1000, |
|
in_chans=3, |
|
global_pool='avg', |
|
bn_size=4, |
|
stem_type='', |
|
act_layer='relu', |
|
norm_layer='batchnorm2d', |
|
aa_layer=None, |
|
drop_rate=0., |
|
proj_drop_rate=0., |
|
memory_efficient=False, |
|
aa_stem_only=True, |
|
): |
|
self.num_classes = num_classes |
|
super(DenseNet, self).__init__() |
|
norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer) |
|
|
|
|
|
deep_stem = 'deep' in stem_type |
|
num_init_features = growth_rate * 2 |
|
if aa_layer is None: |
|
stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
else: |
|
stem_pool = nn.Sequential(*[ |
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1), |
|
aa_layer(channels=num_init_features, stride=2)]) |
|
if deep_stem: |
|
stem_chs_1 = stem_chs_2 = growth_rate |
|
if 'tiered' in stem_type: |
|
stem_chs_1 = 3 * (growth_rate // 4) |
|
stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) |
|
self.features = nn.Sequential(OrderedDict([ |
|
('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), |
|
('norm0', norm_layer(stem_chs_1)), |
|
('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), |
|
('norm1', norm_layer(stem_chs_2)), |
|
('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), |
|
('norm2', norm_layer(num_init_features)), |
|
('pool0', stem_pool), |
|
])) |
|
else: |
|
self.features = nn.Sequential(OrderedDict([ |
|
('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), |
|
('norm0', norm_layer(num_init_features)), |
|
('pool0', stem_pool), |
|
])) |
|
self.feature_info = [ |
|
dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')] |
|
current_stride = 4 |
|
|
|
|
|
num_features = num_init_features |
|
for i, num_layers in enumerate(block_config): |
|
block = DenseBlock( |
|
num_layers=num_layers, |
|
num_input_features=num_features, |
|
bn_size=bn_size, |
|
growth_rate=growth_rate, |
|
norm_layer=norm_layer, |
|
drop_rate=proj_drop_rate, |
|
grad_checkpointing=memory_efficient, |
|
) |
|
module_name = f'denseblock{(i + 1)}' |
|
self.features.add_module(module_name, block) |
|
num_features = num_features + num_layers * growth_rate |
|
transition_aa_layer = None if aa_stem_only else aa_layer |
|
if i != len(block_config) - 1: |
|
self.feature_info += [ |
|
dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] |
|
current_stride *= 2 |
|
trans = DenseTransition( |
|
num_input_features=num_features, |
|
num_output_features=num_features // 2, |
|
norm_layer=norm_layer, |
|
aa_layer=transition_aa_layer, |
|
) |
|
self.features.add_module(f'transition{i + 1}', trans) |
|
num_features = num_features // 2 |
|
|
|
|
|
self.features.add_module('norm5', norm_layer(num_features)) |
|
|
|
self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] |
|
self.num_features = self.head_hidden_size = num_features |
|
|
|
|
|
global_pool, classifier = create_classifier( |
|
self.num_features, |
|
self.num_classes, |
|
pool_type=global_pool, |
|
) |
|
self.global_pool = global_pool |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.classifier = classifier |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.constant_(m.bias, 0) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]', |
|
blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [ |
|
(r'^features\.denseblock(\d+)\.denselayer(\d+)', None), |
|
(r'^features\.transition(\d+)', MATCH_PREV_GROUP) |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for b in self.features.modules(): |
|
if isinstance(b, DenseLayer): |
|
b.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.classifier |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.classifier = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def forward_features(self, x): |
|
return self.features(x) |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.classifier(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _filter_torchvision_pretrained(state_dict): |
|
pattern = re.compile( |
|
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') |
|
|
|
for key in list(state_dict.keys()): |
|
res = pattern.match(key) |
|
if res: |
|
new_key = res.group(1) + res.group(2) |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
return state_dict |
|
|
|
|
|
def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs): |
|
kwargs['growth_rate'] = growth_rate |
|
kwargs['block_config'] = block_config |
|
return build_model_with_cfg( |
|
DenseNet, |
|
variant, |
|
pretrained, |
|
feature_cfg=dict(flatten_sequential=True), |
|
pretrained_filter_fn=_filter_torchvision_pretrained, |
|
**kwargs, |
|
) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'densenet121.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'densenetblur121d.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'densenet264d.untrained': _cfg(), |
|
'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'), |
|
'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'), |
|
'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'), |
|
'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'), |
|
}) |
|
|
|
|
|
@register_model |
|
def densenet121(pretrained=False, **kwargs) -> DenseNet: |
|
r"""Densenet-121 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
""" |
|
model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16)) |
|
model = _create_densenet('densenet121', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def densenetblur121d(pretrained=False, **kwargs) -> DenseNet: |
|
r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
""" |
|
model_args = dict(growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', aa_layer=BlurPool2d) |
|
model = _create_densenet('densenetblur121d', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def densenet169(pretrained=False, **kwargs) -> DenseNet: |
|
r"""Densenet-169 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
""" |
|
model_args = dict(growth_rate=32, block_config=(6, 12, 32, 32)) |
|
model = _create_densenet('densenet169', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def densenet201(pretrained=False, **kwargs) -> DenseNet: |
|
r"""Densenet-201 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
""" |
|
model_args = dict(growth_rate=32, block_config=(6, 12, 48, 32)) |
|
model = _create_densenet('densenet201', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def densenet161(pretrained=False, **kwargs) -> DenseNet: |
|
r"""Densenet-161 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
""" |
|
model_args = dict(growth_rate=48, block_config=(6, 12, 36, 24)) |
|
model = _create_densenet('densenet161', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def densenet264d(pretrained=False, **kwargs) -> DenseNet: |
|
r"""Densenet-264 model from |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
""" |
|
model_args = dict(growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep') |
|
model = _create_densenet('densenet264d', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'tv_densenet121': 'densenet121.tv_in1k', |
|
}) |
|
|