ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/models
/_registry.py
""" Model Registry | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import fnmatch | |
import re | |
import sys | |
import warnings | |
from collections import defaultdict, deque | |
from copy import deepcopy | |
from dataclasses import replace | |
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Sequence, Union, Tuple | |
from ._pretrained import PretrainedCfg, DefaultCfg | |
__all__ = [ | |
'split_model_name_tag', 'get_arch_name', 'register_model', 'generate_default_cfgs', | |
'list_models', 'list_pretrained', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', | |
'get_pretrained_cfg_value', 'is_model_pretrained', 'get_arch_pretrained_cfgs' | |
] | |
_module_to_models: Dict[str, Set[str]] = defaultdict(set) # dict of sets to check membership of model in module | |
_model_to_module: Dict[str, str] = {} # mapping of model names to module names | |
_model_entrypoints: Dict[str, Callable[..., Any]] = {} # mapping of model names to architecture entrypoint fns | |
_model_has_pretrained: Set[str] = set() # set of model names that have pretrained weight url present | |
_model_default_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch -> default cfg objects | |
_model_pretrained_cfgs: Dict[str, PretrainedCfg] = {} # central repo for model arch.tag -> pretrained cfgs | |
_model_with_tags: Dict[str, List[str]] = defaultdict(list) # shortcut to map each model arch to all model + tag names | |
_module_to_deprecated_models: Dict[str, Dict[str, Optional[str]]] = defaultdict(dict) | |
_deprecated_models: Dict[str, Optional[str]] = {} | |
def split_model_name_tag(model_name: str, no_tag: str = '') -> Tuple[str, str]: | |
model_name, *tag_list = model_name.split('.', 1) | |
tag = tag_list[0] if tag_list else no_tag | |
return model_name, tag | |
def get_arch_name(model_name: str) -> str: | |
return split_model_name_tag(model_name)[0] | |
def generate_default_cfgs(cfgs: Dict[str, Union[Dict[str, Any], PretrainedCfg]]): | |
out = defaultdict(DefaultCfg) | |
default_set = set() # no tag and tags ending with * are prioritized as default | |
for k, v in cfgs.items(): | |
if isinstance(v, dict): | |
v = PretrainedCfg(**v) | |
has_weights = v.has_weights | |
model, tag = split_model_name_tag(k) | |
is_default_set = model in default_set | |
priority = (has_weights and not tag) or (tag.endswith('*') and not is_default_set) | |
tag = tag.strip('*') | |
default_cfg = out[model] | |
if priority: | |
default_cfg.tags.appendleft(tag) | |
default_set.add(model) | |
elif has_weights and not default_cfg.is_pretrained: | |
default_cfg.tags.appendleft(tag) | |
else: | |
default_cfg.tags.append(tag) | |
if has_weights: | |
default_cfg.is_pretrained = True | |
default_cfg.cfgs[tag] = v | |
return out | |
def register_model(fn: Callable[..., Any]) -> Callable[..., Any]: | |
# lookup containing module | |
mod = sys.modules[fn.__module__] | |
module_name_split = fn.__module__.split('.') | |
module_name = module_name_split[-1] if len(module_name_split) else '' | |
# add model to __all__ in module | |
model_name = fn.__name__ | |
if hasattr(mod, '__all__'): | |
mod.__all__.append(model_name) | |
else: | |
mod.__all__ = [model_name] # type: ignore | |
# add entries to registry dict/sets | |
if model_name in _model_entrypoints: | |
warnings.warn( | |
f'Overwriting {model_name} in registry with {fn.__module__}.{model_name}. This is because the name being ' | |
'registered conflicts with an existing name. Please check if this is not expected.', | |
stacklevel=2, | |
) | |
_model_entrypoints[model_name] = fn | |
_model_to_module[model_name] = module_name | |
_module_to_models[module_name].add(model_name) | |
if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: | |
# this will catch all models that have entrypoint matching cfg key, but miss any aliasing | |
# entrypoints or non-matching combos | |
default_cfg = mod.default_cfgs[model_name] | |
if not isinstance(default_cfg, DefaultCfg): | |
# new style default cfg dataclass w/ multiple entries per model-arch | |
assert isinstance(default_cfg, dict) | |
# old style cfg dict per model-arch | |
pretrained_cfg = PretrainedCfg(**default_cfg) | |
default_cfg = DefaultCfg(tags=deque(['']), cfgs={'': pretrained_cfg}) | |
for tag_idx, tag in enumerate(default_cfg.tags): | |
is_default = tag_idx == 0 | |
pretrained_cfg = default_cfg.cfgs[tag] | |
model_name_tag = '.'.join([model_name, tag]) if tag else model_name | |
replace_items = dict(architecture=model_name, tag=tag if tag else None) | |
if pretrained_cfg.hf_hub_id and pretrained_cfg.hf_hub_id == 'timm/': | |
# auto-complete hub name w/ architecture.tag | |
replace_items['hf_hub_id'] = pretrained_cfg.hf_hub_id + model_name_tag | |
pretrained_cfg = replace(pretrained_cfg, **replace_items) | |
if is_default: | |
_model_pretrained_cfgs[model_name] = pretrained_cfg | |
if pretrained_cfg.has_weights: | |
# add tagless entry if it's default and has weights | |
_model_has_pretrained.add(model_name) | |
if tag: | |
_model_pretrained_cfgs[model_name_tag] = pretrained_cfg | |
if pretrained_cfg.has_weights: | |
# add model w/ tag if tag is valid | |
_model_has_pretrained.add(model_name_tag) | |
_model_with_tags[model_name].append(model_name_tag) | |
else: | |
_model_with_tags[model_name].append(model_name) # has empty tag (to slowly remove these instances) | |
_model_default_cfgs[model_name] = default_cfg | |
return fn | |
def _deprecated_model_shim(deprecated_name: str, current_fn: Callable = None, current_tag: str = ''): | |
def _fn(pretrained=False, **kwargs): | |
assert current_fn is not None, f'Model {deprecated_name} has been removed with no replacement.' | |
current_name = '.'.join([current_fn.__name__, current_tag]) if current_tag else current_fn.__name__ | |
warnings.warn(f'Mapping deprecated model name {deprecated_name} to current {current_name}.', stacklevel=2) | |
pretrained_cfg = kwargs.pop('pretrained_cfg', None) | |
return current_fn(pretrained=pretrained, pretrained_cfg=pretrained_cfg or current_tag, **kwargs) | |
return _fn | |
def register_model_deprecations(module_name: str, deprecation_map: Dict[str, Optional[str]]): | |
mod = sys.modules[module_name] | |
module_name_split = module_name.split('.') | |
module_name = module_name_split[-1] if len(module_name_split) else '' | |
for deprecated, current in deprecation_map.items(): | |
if hasattr(mod, '__all__'): | |
mod.__all__.append(deprecated) | |
current_fn = None | |
current_tag = '' | |
if current: | |
current_name, current_tag = split_model_name_tag(current) | |
current_fn = getattr(mod, current_name) | |
deprecated_entrypoint_fn = _deprecated_model_shim(deprecated, current_fn, current_tag) | |
setattr(mod, deprecated, deprecated_entrypoint_fn) | |
_model_entrypoints[deprecated] = deprecated_entrypoint_fn | |
_model_to_module[deprecated] = module_name | |
_module_to_models[module_name].add(deprecated) | |
_deprecated_models[deprecated] = current | |
_module_to_deprecated_models[module_name][deprecated] = current | |
def _natural_key(string_: str) -> List[Union[int, str]]: | |
"""See https://blog.codinghorror.com/sorting-for-humans-natural-sort-order/""" | |
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
def _expand_filter(filter: str): | |
""" expand a 'base_filter' to 'base_filter.*' if no tag portion""" | |
filter_base, filter_tag = split_model_name_tag(filter) | |
if not filter_tag: | |
return ['.'.join([filter_base, '*']), filter] | |
else: | |
return [filter] | |
def list_models( | |
filter: Union[str, List[str]] = '', | |
module: Union[str, List[str]] = '', | |
pretrained: bool = False, | |
exclude_filters: Union[str, List[str]] = '', | |
name_matches_cfg: bool = False, | |
include_tags: Optional[bool] = None, | |
) -> List[str]: | |
""" Return list of available model names, sorted alphabetically | |
Args: | |
filter - Wildcard filter string that works with fnmatch | |
module - Limit model selection to a specific submodule (ie 'vision_transformer') | |
pretrained - Include only models with valid pretrained weights if True | |
exclude_filters - Wildcard filters to exclude models after including them with filter | |
name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases) | |
include_tags - Include pretrained tags in model names (model.tag). If None, defaults | |
set to True when pretrained=True else False (default: None) | |
Returns: | |
models - The sorted list of models | |
Example: | |
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' | |
model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module | |
""" | |
if filter: | |
include_filters = filter if isinstance(filter, (tuple, list)) else [filter] | |
else: | |
include_filters = [] | |
if include_tags is None: | |
# FIXME should this be default behaviour? or default to include_tags=True? | |
include_tags = pretrained | |
if not module: | |
all_models: Set[str] = set(_model_entrypoints.keys()) | |
else: | |
if isinstance(module, str): | |
all_models: Set[str] = _module_to_models[module] | |
else: | |
assert isinstance(module, Sequence) | |
all_models: Set[str] = set() | |
for m in module: | |
all_models.update(_module_to_models[m]) | |
all_models = all_models - _deprecated_models.keys() # remove deprecated models from listings | |
if include_tags: | |
# expand model names to include names w/ pretrained tags | |
models_with_tags: Set[str] = set() | |
for m in all_models: | |
models_with_tags.update(_model_with_tags[m]) | |
all_models = models_with_tags | |
# expand include and exclude filters to include a '.*' for proper match if no tags in filter | |
include_filters = [ef for f in include_filters for ef in _expand_filter(f)] | |
exclude_filters = [ef for f in exclude_filters for ef in _expand_filter(f)] | |
if include_filters: | |
models: Set[str] = set() | |
for f in include_filters: | |
include_models = fnmatch.filter(all_models, f) # include these models | |
if len(include_models): | |
models = models.union(include_models) | |
else: | |
models = all_models | |
if exclude_filters: | |
if not isinstance(exclude_filters, (tuple, list)): | |
exclude_filters = [exclude_filters] | |
for xf in exclude_filters: | |
exclude_models = fnmatch.filter(models, xf) # exclude these models | |
if len(exclude_models): | |
models = models.difference(exclude_models) | |
if pretrained: | |
models = _model_has_pretrained.intersection(models) | |
if name_matches_cfg: | |
models = set(_model_pretrained_cfgs).intersection(models) | |
return sorted(models, key=_natural_key) | |
def list_pretrained( | |
filter: Union[str, List[str]] = '', | |
exclude_filters: str = '', | |
) -> List[str]: | |
return list_models( | |
filter=filter, | |
pretrained=True, | |
exclude_filters=exclude_filters, | |
include_tags=True, | |
) | |
def get_deprecated_models(module: str = '') -> Dict[str, str]: | |
all_deprecated = _module_to_deprecated_models[module] if module else _deprecated_models | |
return deepcopy(all_deprecated) | |
def is_model(model_name: str) -> bool: | |
""" Check if a model name exists | |
""" | |
arch_name = get_arch_name(model_name) | |
return arch_name in _model_entrypoints | |
def model_entrypoint(model_name: str, module_filter: Optional[str] = None) -> Callable[..., Any]: | |
"""Fetch a model entrypoint for specified model name | |
""" | |
arch_name = get_arch_name(model_name) | |
if module_filter and arch_name not in _module_to_models.get(module_filter, {}): | |
raise RuntimeError(f'Model ({model_name} not found in module {module_filter}.') | |
return _model_entrypoints[arch_name] | |
def list_modules() -> List[str]: | |
""" Return list of module names that contain models / model entrypoints | |
""" | |
modules = _module_to_models.keys() | |
return sorted(modules) | |
def is_model_in_modules( | |
model_name: str, module_names: Union[Tuple[str, ...], List[str], Set[str]] | |
) -> bool: | |
"""Check if a model exists within a subset of modules | |
Args: | |
model_name - name of model to check | |
module_names - names of modules to search in | |
""" | |
arch_name = get_arch_name(model_name) | |
assert isinstance(module_names, (tuple, list, set)) | |
return any(arch_name in _module_to_models[n] for n in module_names) | |
def is_model_pretrained(model_name: str) -> bool: | |
return model_name in _model_has_pretrained | |
def get_pretrained_cfg(model_name: str, allow_unregistered: bool = True) -> Optional[PretrainedCfg]: | |
if model_name in _model_pretrained_cfgs: | |
return deepcopy(_model_pretrained_cfgs[model_name]) | |
arch_name, tag = split_model_name_tag(model_name) | |
if arch_name in _model_default_cfgs: | |
# if model arch exists, but the tag is wrong, error out | |
raise RuntimeError(f'Invalid pretrained tag ({tag}) for {arch_name}.') | |
if allow_unregistered: | |
# if model arch doesn't exist, it has no pretrained_cfg registered, allow a default to be created | |
return None | |
raise RuntimeError(f'Model architecture ({arch_name}) has no pretrained cfg registered.') | |
def get_pretrained_cfg_value(model_name: str, cfg_key: str) -> Optional[Any]: | |
""" Get a specific model default_cfg value by key. None if key doesn't exist. | |
""" | |
cfg = get_pretrained_cfg(model_name, allow_unregistered=False) | |
return getattr(cfg, cfg_key, None) | |
def get_arch_pretrained_cfgs(model_name: str) -> Dict[str, PretrainedCfg]: | |
""" Get all pretrained cfgs for a given architecture. | |
""" | |
arch_name, _ = split_model_name_tag(model_name) | |
model_names = _model_with_tags[arch_name] | |
cfgs = {m: _model_pretrained_cfgs[m] for m in model_names} | |
return cfgs | |