ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/real_labels.py
""" Real labels evaluator for ImageNet | |
Paper: `Are we done with ImageNet?` - https://arxiv.org/abs/2006.07159 | |
Based on Numpy example at https://github.com/google-research/reassessed-imagenet | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import os | |
import json | |
import numpy as np | |
import pkgutil | |
class RealLabelsImagenet: | |
def __init__(self, filenames, real_json=None, topk=(1, 5)): | |
if real_json is not None: | |
with open(real_json) as real_labels: | |
real_labels = json.load(real_labels) | |
else: | |
real_labels = json.loads( | |
pkgutil.get_data(__name__, os.path.join('_info', 'imagenet_real_labels.json')).decode('utf-8')) | |
real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for i, labels in enumerate(real_labels)} | |
self.real_labels = real_labels | |
self.filenames = filenames | |
assert len(self.filenames) == len(self.real_labels) | |
self.topk = topk | |
self.is_correct = {k: [] for k in topk} | |
self.sample_idx = 0 | |
def add_result(self, output): | |
maxk = max(self.topk) | |
_, pred_batch = output.topk(maxk, 1, True, True) | |
pred_batch = pred_batch.cpu().numpy() | |
for pred in pred_batch: | |
filename = self.filenames[self.sample_idx] | |
filename = os.path.basename(filename) | |
if self.real_labels[filename]: | |
for k in self.topk: | |
self.is_correct[k].append( | |
any([p in self.real_labels[filename] for p in pred[:k]])) | |
self.sample_idx += 1 | |
def get_accuracy(self, k=None): | |
if k is None: | |
return {k: float(np.mean(self.is_correct[k])) * 100 for k in self.topk} | |
else: | |
return float(np.mean(self.is_correct[k])) * 100 | |