|
""" Loader Factory, Fast Collate, CUDA Prefetcher |
|
|
|
Prefetcher and Fast Collate inspired by NVIDIA APEX example at |
|
https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf |
|
|
|
Hacked together by / Copyright 2019, Ross Wightman |
|
""" |
|
import logging |
|
import random |
|
from contextlib import suppress |
|
from functools import partial |
|
from itertools import repeat |
|
from typing import Callable, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.data |
|
import numpy as np |
|
|
|
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .dataset import IterableImageDataset, ImageDataset |
|
from .distributed_sampler import OrderedDistributedSampler, RepeatAugSampler |
|
from .random_erasing import RandomErasing |
|
from .mixup import FastCollateMixup |
|
from .transforms_factory import create_transform |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def fast_collate(batch): |
|
""" A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)""" |
|
assert isinstance(batch[0], tuple) |
|
batch_size = len(batch) |
|
if isinstance(batch[0][0], tuple): |
|
|
|
|
|
inner_tuple_size = len(batch[0][0]) |
|
flattened_batch_size = batch_size * inner_tuple_size |
|
targets = torch.zeros(flattened_batch_size, dtype=torch.int64) |
|
tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8) |
|
for i in range(batch_size): |
|
assert len(batch[i][0]) == inner_tuple_size |
|
for j in range(inner_tuple_size): |
|
targets[i + j * batch_size] = batch[i][1] |
|
tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j]) |
|
return tensor, targets |
|
elif isinstance(batch[0][0], np.ndarray): |
|
targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) |
|
assert len(targets) == batch_size |
|
tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) |
|
for i in range(batch_size): |
|
tensor[i] += torch.from_numpy(batch[i][0]) |
|
return tensor, targets |
|
elif isinstance(batch[0][0], torch.Tensor): |
|
targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) |
|
assert len(targets) == batch_size |
|
tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) |
|
for i in range(batch_size): |
|
tensor[i].copy_(batch[i][0]) |
|
return tensor, targets |
|
else: |
|
assert False |
|
|
|
|
|
def adapt_to_chs(x, n): |
|
if not isinstance(x, (tuple, list)): |
|
x = tuple(repeat(x, n)) |
|
elif len(x) != n: |
|
x_mean = np.mean(x).item() |
|
x = (x_mean,) * n |
|
_logger.warning(f'Pretrained mean/std different shape than model, using avg value {x}.') |
|
else: |
|
assert len(x) == n, 'normalization stats must match image channels' |
|
return x |
|
|
|
|
|
class PrefetchLoader: |
|
|
|
def __init__( |
|
self, |
|
loader, |
|
mean=IMAGENET_DEFAULT_MEAN, |
|
std=IMAGENET_DEFAULT_STD, |
|
channels=3, |
|
device=torch.device('cuda'), |
|
img_dtype=torch.float32, |
|
fp16=False, |
|
re_prob=0., |
|
re_mode='const', |
|
re_count=1, |
|
re_num_splits=0): |
|
|
|
mean = adapt_to_chs(mean, channels) |
|
std = adapt_to_chs(std, channels) |
|
normalization_shape = (1, channels, 1, 1) |
|
|
|
self.loader = loader |
|
self.device = device |
|
if fp16: |
|
|
|
img_dtype = torch.float16 |
|
self.img_dtype = img_dtype |
|
self.mean = torch.tensor( |
|
[x * 255 for x in mean], device=device, dtype=img_dtype).view(normalization_shape) |
|
self.std = torch.tensor( |
|
[x * 255 for x in std], device=device, dtype=img_dtype).view(normalization_shape) |
|
if re_prob > 0.: |
|
self.random_erasing = RandomErasing( |
|
probability=re_prob, |
|
mode=re_mode, |
|
max_count=re_count, |
|
num_splits=re_num_splits, |
|
device=device, |
|
) |
|
else: |
|
self.random_erasing = None |
|
self.is_cuda = device.type == 'cuda' and torch.cuda.is_available() |
|
self.is_npu = device.type == 'npu' and torch.npu.is_available() |
|
|
|
def __iter__(self): |
|
first = True |
|
if self.is_cuda: |
|
stream = torch.cuda.Stream() |
|
stream_context = partial(torch.cuda.stream, stream=stream) |
|
elif self.is_npu: |
|
stream = torch.npu.Stream() |
|
stream_context = partial(torch.npu.stream, stream=stream) |
|
else: |
|
stream = None |
|
stream_context = suppress |
|
|
|
for next_input, next_target in self.loader: |
|
|
|
with stream_context(): |
|
next_input = next_input.to(device=self.device, non_blocking=True) |
|
next_target = next_target.to(device=self.device, non_blocking=True) |
|
next_input = next_input.to(self.img_dtype).sub_(self.mean).div_(self.std) |
|
if self.random_erasing is not None: |
|
next_input = self.random_erasing(next_input) |
|
|
|
if not first: |
|
yield input, target |
|
else: |
|
first = False |
|
|
|
if stream is not None: |
|
if self.is_cuda: |
|
torch.cuda.current_stream().wait_stream(stream) |
|
elif self.is_npu: |
|
torch.npu.current_stream().wait_stream(stream) |
|
|
|
input = next_input |
|
target = next_target |
|
|
|
yield input, target |
|
|
|
def __len__(self): |
|
return len(self.loader) |
|
|
|
@property |
|
def sampler(self): |
|
return self.loader.sampler |
|
|
|
@property |
|
def dataset(self): |
|
return self.loader.dataset |
|
|
|
@property |
|
def mixup_enabled(self): |
|
if isinstance(self.loader.collate_fn, FastCollateMixup): |
|
return self.loader.collate_fn.mixup_enabled |
|
else: |
|
return False |
|
|
|
@mixup_enabled.setter |
|
def mixup_enabled(self, x): |
|
if isinstance(self.loader.collate_fn, FastCollateMixup): |
|
self.loader.collate_fn.mixup_enabled = x |
|
|
|
|
|
def _worker_init(worker_id, worker_seeding='all'): |
|
worker_info = torch.utils.data.get_worker_info() |
|
assert worker_info.id == worker_id |
|
if isinstance(worker_seeding, Callable): |
|
seed = worker_seeding(worker_info) |
|
random.seed(seed) |
|
torch.manual_seed(seed) |
|
np.random.seed(seed % (2 ** 32 - 1)) |
|
else: |
|
assert worker_seeding in ('all', 'part') |
|
|
|
|
|
if worker_seeding == 'all': |
|
np.random.seed(worker_info.seed % (2 ** 32 - 1)) |
|
|
|
|
|
def create_loader( |
|
dataset: Union[ImageDataset, IterableImageDataset], |
|
input_size: Union[int, Tuple[int, int], Tuple[int, int, int]], |
|
batch_size: int, |
|
is_training: bool = False, |
|
no_aug: bool = False, |
|
re_prob: float = 0., |
|
re_mode: str = 'const', |
|
re_count: int = 1, |
|
re_split: bool = False, |
|
train_crop_mode: Optional[str] = None, |
|
scale: Optional[Tuple[float, float]] = None, |
|
ratio: Optional[Tuple[float, float]] = None, |
|
hflip: float = 0.5, |
|
vflip: float = 0., |
|
color_jitter: float = 0.4, |
|
color_jitter_prob: Optional[float] = None, |
|
grayscale_prob: float = 0., |
|
gaussian_blur_prob: float = 0., |
|
auto_augment: Optional[str] = None, |
|
num_aug_repeats: int = 0, |
|
num_aug_splits: int = 0, |
|
interpolation: str = 'bilinear', |
|
mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, |
|
std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, |
|
num_workers: int = 1, |
|
distributed: bool = False, |
|
crop_pct: Optional[float] = None, |
|
crop_mode: Optional[str] = None, |
|
crop_border_pixels: Optional[int] = None, |
|
collate_fn: Optional[Callable] = None, |
|
pin_memory: bool = False, |
|
fp16: bool = False, |
|
img_dtype: torch.dtype = torch.float32, |
|
device: torch.device = torch.device('cuda'), |
|
use_prefetcher: bool = True, |
|
use_multi_epochs_loader: bool = False, |
|
persistent_workers: bool = True, |
|
worker_seeding: str = 'all', |
|
tf_preprocessing: bool = False, |
|
): |
|
""" |
|
|
|
Args: |
|
dataset: The image dataset to load. |
|
input_size: Target input size (channels, height, width) tuple or size scalar. |
|
batch_size: Number of samples in a batch. |
|
is_training: Return training (random) transforms. |
|
no_aug: Disable augmentation for training (useful for debug). |
|
re_prob: Random erasing probability. |
|
re_mode: Random erasing fill mode. |
|
re_count: Number of random erasing regions. |
|
re_split: Control split of random erasing across batch size. |
|
scale: Random resize scale range (crop area, < 1.0 => zoom in). |
|
ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). |
|
hflip: Horizontal flip probability. |
|
vflip: Vertical flip probability. |
|
color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). |
|
Scalar is applied as (scalar,) * 3 (no hue). |
|
color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug |
|
grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). |
|
gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). |
|
auto_augment: Auto augment configuration string (see auto_augment.py). |
|
num_aug_repeats: Enable special sampler to repeat same augmentation across distributed GPUs. |
|
num_aug_splits: Enable mode where augmentations can be split across the batch. |
|
interpolation: Image interpolation mode. |
|
mean: Image normalization mean. |
|
std: Image normalization standard deviation. |
|
num_workers: Num worker processes per DataLoader. |
|
distributed: Enable dataloading for distributed training. |
|
crop_pct: Inference crop percentage (output size / resize size). |
|
crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. |
|
crop_border_pixels: Inference crop border of specified # pixels around edge of original image. |
|
collate_fn: Override default collate_fn. |
|
pin_memory: Pin memory for device transfer. |
|
fp16: Deprecated argument for half-precision input dtype. Use img_dtype. |
|
img_dtype: Data type for input image. |
|
device: Device to transfer inputs and targets to. |
|
use_prefetcher: Use efficient pre-fetcher to load samples onto device. |
|
use_multi_epochs_loader: |
|
persistent_workers: Enable persistent worker processes. |
|
worker_seeding: Control worker random seeding at init. |
|
tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports. |
|
|
|
Returns: |
|
DataLoader |
|
""" |
|
re_num_splits = 0 |
|
if re_split: |
|
|
|
re_num_splits = num_aug_splits or 2 |
|
dataset.transform = create_transform( |
|
input_size, |
|
is_training=is_training, |
|
no_aug=no_aug, |
|
train_crop_mode=train_crop_mode, |
|
scale=scale, |
|
ratio=ratio, |
|
hflip=hflip, |
|
vflip=vflip, |
|
color_jitter=color_jitter, |
|
color_jitter_prob=color_jitter_prob, |
|
grayscale_prob=grayscale_prob, |
|
gaussian_blur_prob=gaussian_blur_prob, |
|
auto_augment=auto_augment, |
|
interpolation=interpolation, |
|
mean=mean, |
|
std=std, |
|
crop_pct=crop_pct, |
|
crop_mode=crop_mode, |
|
crop_border_pixels=crop_border_pixels, |
|
re_prob=re_prob, |
|
re_mode=re_mode, |
|
re_count=re_count, |
|
re_num_splits=re_num_splits, |
|
tf_preprocessing=tf_preprocessing, |
|
use_prefetcher=use_prefetcher, |
|
separate=num_aug_splits > 0, |
|
) |
|
|
|
if isinstance(dataset, IterableImageDataset): |
|
|
|
|
|
dataset.set_loader_cfg(num_workers=num_workers) |
|
|
|
sampler = None |
|
if distributed and not isinstance(dataset, torch.utils.data.IterableDataset): |
|
if is_training: |
|
if num_aug_repeats: |
|
sampler = RepeatAugSampler(dataset, num_repeats=num_aug_repeats) |
|
else: |
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset) |
|
else: |
|
|
|
|
|
sampler = OrderedDistributedSampler(dataset) |
|
else: |
|
assert num_aug_repeats == 0, "RepeatAugment not currently supported in non-distributed or IterableDataset use" |
|
|
|
if collate_fn is None: |
|
collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate |
|
|
|
loader_class = torch.utils.data.DataLoader |
|
if use_multi_epochs_loader: |
|
loader_class = MultiEpochsDataLoader |
|
|
|
loader_args = dict( |
|
batch_size=batch_size, |
|
shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training, |
|
num_workers=num_workers, |
|
sampler=sampler, |
|
collate_fn=collate_fn, |
|
pin_memory=pin_memory, |
|
drop_last=is_training, |
|
worker_init_fn=partial(_worker_init, worker_seeding=worker_seeding), |
|
persistent_workers=persistent_workers |
|
) |
|
try: |
|
loader = loader_class(dataset, **loader_args) |
|
except TypeError as e: |
|
loader_args.pop('persistent_workers') |
|
loader = loader_class(dataset, **loader_args) |
|
if use_prefetcher: |
|
prefetch_re_prob = re_prob if is_training and not no_aug else 0. |
|
loader = PrefetchLoader( |
|
loader, |
|
mean=mean, |
|
std=std, |
|
channels=input_size[0], |
|
device=device, |
|
fp16=fp16, |
|
img_dtype=img_dtype, |
|
re_prob=prefetch_re_prob, |
|
re_mode=re_mode, |
|
re_count=re_count, |
|
re_num_splits=re_num_splits |
|
) |
|
|
|
return loader |
|
|
|
|
|
class MultiEpochsDataLoader(torch.utils.data.DataLoader): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self._DataLoader__initialized = False |
|
if self.batch_sampler is None: |
|
self.sampler = _RepeatSampler(self.sampler) |
|
else: |
|
self.batch_sampler = _RepeatSampler(self.batch_sampler) |
|
self._DataLoader__initialized = True |
|
self.iterator = super().__iter__() |
|
|
|
def __len__(self): |
|
return len(self.sampler) if self.batch_sampler is None else len(self.batch_sampler.sampler) |
|
|
|
def __iter__(self): |
|
for i in range(len(self)): |
|
yield next(self.iterator) |
|
|
|
|
|
class _RepeatSampler(object): |
|
""" Sampler that repeats forever. |
|
|
|
Args: |
|
sampler (Sampler) |
|
""" |
|
|
|
def __init__(self, sampler): |
|
self.sampler = sampler |
|
|
|
def __iter__(self): |
|
while True: |
|
yield from iter(self.sampler) |
|
|