File size: 19,060 Bytes
81d747c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
""" Transforms Factory
Factory methods for building image transforms for use with TIMM (PyTorch Image Models)

Hacked together by / Copyright 2019, Ross Wightman
"""
import math
from typing import Optional, Tuple, Union

import torch
from torchvision import transforms

from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT
from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform
from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \
    ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor
from timm.data.random_erasing import RandomErasing


def transforms_noaug_train(
        img_size: Union[int, Tuple[int, int]] = 224,
        interpolation: str = 'bilinear',
        mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
        std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
        use_prefetcher: bool = False,
        normalize: bool = True,
):
    """ No-augmentation image transforms for training.

    Args:
        img_size: Target image size.
        interpolation: Image interpolation mode.
        mean: Image normalization mean.
        std: Image normalization standard deviation.
        use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize.
        normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used).

    Returns:

    """
    if interpolation == 'random':
        # random interpolation not supported with no-aug
        interpolation = 'bilinear'
    tfl = [
        transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)),
        transforms.CenterCrop(img_size)
    ]
    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        tfl += [ToNumpy()]
    elif not normalize:
        # when normalize disabled, converted to tensor without scaling, keep original dtype
        tfl += [MaybePILToTensor()]
    else:
        tfl += [
            MaybeToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std)
            )
        ]
    return transforms.Compose(tfl)


def transforms_imagenet_train(
        img_size: Union[int, Tuple[int, int]] = 224,
        scale: Optional[Tuple[float, float]] = None,
        ratio: Optional[Tuple[float, float]] = None,
        train_crop_mode: Optional[str] = None,
        hflip: float = 0.5,
        vflip: float = 0.,
        color_jitter: Union[float, Tuple[float, ...]] = 0.4,
        color_jitter_prob: Optional[float] = None,
        force_color_jitter: bool = False,
        grayscale_prob: float = 0.,
        gaussian_blur_prob: float = 0.,
        auto_augment: Optional[str] = None,
        interpolation: str = 'random',
        mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
        std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
        re_prob: float = 0.,
        re_mode: str = 'const',
        re_count: int = 1,
        re_num_splits: int = 0,
        use_prefetcher: bool = False,
        normalize: bool = True,
        separate: bool = False,
):
    """ ImageNet-oriented image transforms for training.

    Args:
        img_size: Target image size.
        train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr').
        scale: Random resize scale range (crop area, < 1.0 => zoom in).
        ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
        hflip: Horizontal flip probability.
        vflip: Vertical flip probability.
        color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue).
            Scalar is applied as (scalar,) * 3 (no hue).
        color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug).
        force_color_jitter: Force color jitter where it is normally disabled (ie with RandAugment on).
        grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug).
        gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug).
        auto_augment: Auto augment configuration string (see auto_augment.py).
        interpolation: Image interpolation mode.
        mean: Image normalization mean.
        std: Image normalization standard deviation.
        re_prob: Random erasing probability.
        re_mode: Random erasing fill mode.
        re_count: Number of random erasing regions.
        re_num_splits: Control split of random erasing across batch size.
        use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize.
        normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used).
        separate: Output transforms in 3-stage tuple.

    Returns:
        If separate==True, the transforms are returned as a tuple of 3 separate transforms
          for use in a mixing dataset that passes
            * all data through the first (primary) transform, called the 'clean' data
            * a portion of the data through the secondary transform
            * normalizes and converts the branches above with the third, final transform
    """
    train_crop_mode = train_crop_mode or 'rrc'
    assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'}
    if train_crop_mode in ('rkrc', 'rkrr'):
        # FIXME integration of RKR is a WIP
        scale = tuple(scale or (0.8, 1.00))
        ratio = tuple(ratio or (0.9, 1/.9))
        primary_tfl = [
            ResizeKeepRatio(
                img_size,
                interpolation=interpolation,
                random_scale_prob=0.5,
                random_scale_range=scale,
                random_scale_area=True,  # scale compatible with RRC
                random_aspect_prob=0.5,
                random_aspect_range=ratio,
            ),
            CenterCropOrPad(img_size, padding_mode='reflect')
            if train_crop_mode == 'rkrc' else
            RandomCropOrPad(img_size, padding_mode='reflect')
        ]
    else:
        scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
        ratio = tuple(ratio or (3. / 4., 4. / 3.))  # default imagenet ratio range
        primary_tfl = [
            RandomResizedCropAndInterpolation(
                img_size,
                scale=scale,
                ratio=ratio,
                interpolation=interpolation,
            )
        ]
    if hflip > 0.:
        primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
    if vflip > 0.:
        primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]

    secondary_tfl = []
    disable_color_jitter = False
    if auto_augment:
        assert isinstance(auto_augment, str)
        # color jitter is typically disabled if AA/RA on,
        # this allows override without breaking old hparm cfgs
        disable_color_jitter = not (force_color_jitter or '3a' in auto_augment)
        if isinstance(img_size, (tuple, list)):
            img_size_min = min(img_size)
        else:
            img_size_min = img_size
        aa_params = dict(
            translate_const=int(img_size_min * 0.45),
            img_mean=tuple([min(255, round(255 * x)) for x in mean]),
        )
        if interpolation and interpolation != 'random':
            aa_params['interpolation'] = str_to_pil_interp(interpolation)
        if auto_augment.startswith('rand'):
            secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
        elif auto_augment.startswith('augmix'):
            aa_params['translate_pct'] = 0.3
            secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)]
        else:
            secondary_tfl += [auto_augment_transform(auto_augment, aa_params)]

    if color_jitter is not None and not disable_color_jitter:
        # color jitter is enabled when not using AA or when forced
        if isinstance(color_jitter, (list, tuple)):
            # color jitter should be a 3-tuple/list if spec brightness/contrast/saturation
            # or 4 if also augmenting hue
            assert len(color_jitter) in (3, 4)
        else:
            # if it's a scalar, duplicate for brightness, contrast, and saturation, no hue
            color_jitter = (float(color_jitter),) * 3
        if color_jitter_prob is not None:
            secondary_tfl += [
                transforms.RandomApply([
                        transforms.ColorJitter(*color_jitter),
                    ],
                    p=color_jitter_prob
                )
            ]
        else:
            secondary_tfl += [transforms.ColorJitter(*color_jitter)]

    if grayscale_prob:
        secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)]

    if gaussian_blur_prob:
        secondary_tfl += [
            transforms.RandomApply([
                    transforms.GaussianBlur(kernel_size=23),  # hardcoded for now
                ],
                p=gaussian_blur_prob,
            )
        ]

    final_tfl = []
    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        final_tfl += [ToNumpy()]
    elif not normalize:
        # when normalize disable, converted to tensor without scaling, keeps original dtype
        final_tfl += [MaybePILToTensor()]
    else:
        final_tfl += [
            MaybeToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std),
            ),
        ]
        if re_prob > 0.:
            final_tfl += [
                RandomErasing(
                    re_prob,
                    mode=re_mode,
                    max_count=re_count,
                    num_splits=re_num_splits,
                    device='cpu',
                )
            ]

    if separate:
        return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl)
    else:
        return transforms.Compose(primary_tfl + secondary_tfl + final_tfl)


def transforms_imagenet_eval(
        img_size: Union[int, Tuple[int, int]] = 224,
        crop_pct: Optional[float] = None,
        crop_mode: Optional[str] = None,
        crop_border_pixels: Optional[int] = None,
        interpolation: str = 'bilinear',
        mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
        std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
        use_prefetcher: bool = False,
        normalize: bool = True,
):
    """ ImageNet-oriented image transform for evaluation and inference.

    Args:
        img_size: Target image size.
        crop_pct: Crop percentage. Defaults to 0.875 when None.
        crop_mode: Crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None.
        crop_border_pixels: Trim a border of specified # pixels around edge of original image.
        interpolation: Image interpolation mode.
        mean: Image normalization mean.
        std: Image normalization standard deviation.
        use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize.
        normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used).

    Returns:
        Composed transform pipeline
    """
    crop_pct = crop_pct or DEFAULT_CROP_PCT

    if isinstance(img_size, (tuple, list)):
        assert len(img_size) == 2
        scale_size = tuple([math.floor(x / crop_pct) for x in img_size])
    else:
        scale_size = math.floor(img_size / crop_pct)
        scale_size = (scale_size, scale_size)

    tfl = []

    if crop_border_pixels:
        tfl += [TrimBorder(crop_border_pixels)]

    if crop_mode == 'squash':
        # squash mode scales each edge to 1/pct of target, then crops
        # aspect ratio is not preserved, no img lost if crop_pct == 1.0
        tfl += [
            transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)),
            transforms.CenterCrop(img_size),
        ]
    elif crop_mode == 'border':
        # scale the longest edge of image to 1/pct of target edge, add borders to pad, then crop
        # no image lost if crop_pct == 1.0
        fill = [round(255 * v) for v in mean]
        tfl += [
            ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0),
            CenterCropOrPad(img_size, fill=fill),
        ]
    else:
        # default crop model is center
        # aspect ratio is preserved, crops center within image, no borders are added, image is lost
        if scale_size[0] == scale_size[1]:
            # simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
            tfl += [
                transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation))
            ]
        else:
            # resize the shortest edge to matching target dim for non-square target
            tfl += [ResizeKeepRatio(scale_size)]
        tfl += [transforms.CenterCrop(img_size)]

    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        tfl += [ToNumpy()]
    elif not normalize:
        # when normalize disabled, converted to tensor without scaling, keeps original dtype
        tfl += [MaybePILToTensor()]
    else:
        tfl += [
            MaybeToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std),
            ),
        ]

    return transforms.Compose(tfl)


def create_transform(
        input_size: Union[int, Tuple[int, int], Tuple[int, int, int]] = 224,
        is_training: bool = False,
        no_aug: bool = False,
        train_crop_mode: Optional[str] = None,
        scale: Optional[Tuple[float, float]] = None,
        ratio: Optional[Tuple[float, float]] = None,
        hflip: float = 0.5,
        vflip: float = 0.,
        color_jitter: Union[float, Tuple[float, ...]] = 0.4,
        color_jitter_prob: Optional[float] = None,
        grayscale_prob: float = 0.,
        gaussian_blur_prob: float = 0.,
        auto_augment: Optional[str] = None,
        interpolation: str = 'bilinear',
        mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN,
        std: Tuple[float, ...] = IMAGENET_DEFAULT_STD,
        re_prob: float = 0.,
        re_mode: str = 'const',
        re_count: int = 1,
        re_num_splits: int = 0,
        crop_pct: Optional[float] = None,
        crop_mode: Optional[str] = None,
        crop_border_pixels: Optional[int] = None,
        tf_preprocessing: bool = False,
        use_prefetcher: bool = False,
        normalize: bool = True,
        separate: bool = False,
):
    """

    Args:
        input_size: Target input size (channels, height, width) tuple or size scalar.
        is_training: Return training (random) transforms.
        no_aug: Disable augmentation for training (useful for debug).
        train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr').
        scale: Random resize scale range (crop area, < 1.0 => zoom in).
        ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
        hflip: Horizontal flip probability.
        vflip: Vertical flip probability.
        color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue).
            Scalar is applied as (scalar,) * 3 (no hue).
        color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug).
        grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug).
        gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug).
        auto_augment: Auto augment configuration string (see auto_augment.py).
        interpolation: Image interpolation mode.
        mean: Image normalization mean.
        std: Image normalization standard deviation.
        re_prob: Random erasing probability.
        re_mode: Random erasing fill mode.
        re_count: Number of random erasing regions.
        re_num_splits: Control split of random erasing across batch size.
        crop_pct: Inference crop percentage (output size / resize size).
        crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None.
        crop_border_pixels: Inference crop border of specified # pixels around edge of original image.
        tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports
        use_prefetcher: Pre-fetcher enabled. Do not convert image to tensor or normalize.
        normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used).
        separate: Output transforms in 3-stage tuple.

    Returns:
        Composed transforms or tuple thereof
    """
    if isinstance(input_size, (tuple, list)):
        img_size = input_size[-2:]
    else:
        img_size = input_size

    if tf_preprocessing and use_prefetcher:
        assert not separate, "Separate transforms not supported for TF preprocessing"
        from timm.data.tf_preprocessing import TfPreprocessTransform
        transform = TfPreprocessTransform(
            is_training=is_training,
            size=img_size,
            interpolation=interpolation,
        )
    else:
        if is_training and no_aug:
            assert not separate, "Cannot perform split augmentation with no_aug"
            transform = transforms_noaug_train(
                img_size,
                interpolation=interpolation,
                mean=mean,
                std=std,
                use_prefetcher=use_prefetcher,
                normalize=normalize,
            )
        elif is_training:
            transform = transforms_imagenet_train(
                img_size,
                train_crop_mode=train_crop_mode,
                scale=scale,
                ratio=ratio,
                hflip=hflip,
                vflip=vflip,
                color_jitter=color_jitter,
                color_jitter_prob=color_jitter_prob,
                grayscale_prob=grayscale_prob,
                gaussian_blur_prob=gaussian_blur_prob,
                auto_augment=auto_augment,
                interpolation=interpolation,
                mean=mean,
                std=std,
                re_prob=re_prob,
                re_mode=re_mode,
                re_count=re_count,
                re_num_splits=re_num_splits,
                use_prefetcher=use_prefetcher,
                normalize=normalize,
                separate=separate,
            )
        else:
            assert not separate, "Separate transforms not supported for validation preprocessing"
            transform = transforms_imagenet_eval(
                img_size,
                interpolation=interpolation,
                mean=mean,
                std=std,
                crop_pct=crop_pct,
                crop_mode=crop_mode,
                crop_border_pixels=crop_border_pixels,
                use_prefetcher=use_prefetcher,
                normalize=normalize,
            )

    return transform