--- dataset_info: features: - name: audio_tokens sequence: int64 - name: genre_id dtype: int64 - name: genre dtype: string - name: song_id dtype: int64 splits: - name: train num_bytes: 479627928 num_examples: 19909 - name: test num_bytes: 122306220 num_examples: 5076 download_size: 123311267 dataset_size: 601934148 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- This dataset contains tokenized audio from [lewtun/music_genres](https://huggingface.co/datasets/lewtun/music_genres) using [SemantiCodec](https://arxiv.org/abs/2405.00233) for performing experiments on AR music generation The following script is used for tokenization ```python from datasets import load_dataset, Dataset, DatasetDict model_id = "" repo_name = "" user_name = "" token = "" cache_dir = "cache" vocab_size = 4096 dataset = load_dataset(model_id, cache_dir=cache_dir, trust_remote_code=True) from semanticodec import SemantiCodec semanticodec = SemantiCodec(token_rate=100, semantic_vocab_size=vocab_size) import soundfile as sf from tqdm import tqdm import math dd = { "train": 0, "test": 0 } for split in ["train", "test"]: tkns = [] for idx in tqdm(range(len(dataset[split]))): sample = dataset[split][idx]["audio"] array = sample["array"] sr = sample["sampling_rate"] sf.write("output.wav", array, sr) tokens = semanticodec.encode("output.wav").detach().cpu().numpy().flatten() tkns.append(tokens) ds = Dataset.from_dict({ "audio_tokens": tkns, "genre_id": list(dataset[split]["genre_id"]), "genre": list(dataset[split]["genre"]), "song_id": list(dataset[split]["song_id"]) }) dd[split] = ds dd = DatasetDict(dd) dd.save_to_disk(repo_name) dd.push_to_hub(f"{user_name}/{repo_name}", token=token) ```