# coding=utf-8 import json import os from pathlib import Path import datasets from PIL import Image # import torch # from detectron2.data.transforms import ResizeTransform, TransformList logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{2019, title={ICDAR2019 Competition on Scanned Receipt OCR and Information Extraction}, url={http://dx.doi.org/10.1109/ICDAR.2019.00244}, DOI={10.1109/icdar.2019.00244}, journal={2019 International Conference on Document Analysis and Recognition (ICDAR)}, publisher={IEEE}, author={Huang, Zheng and Chen, Kai and He, Jianhua and Bai, Xiang and Karatzas, Dimosthenis and Lu, Shijian and Jawahar, C. V.}, year={2019}, month={Sep} } """ _DESCRIPTION = """\ https://arxiv.org/abs/2103.10213 """ def load_image(image_path): image = Image.open(image_path) w, h = image.size return image, (w, h) def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] def _get_drive_url(url): base_url = 'https://drive.google.com/uc?id=' split_url = url.split('/') return base_url + split_url[5] _URLS = [ _get_drive_url("https://drive.google.com/file/d/1p45RejzoCAKoefSY91rkLB9eaS_EmcAe/view?usp=sharing"), ] class SroieConfig(datasets.BuilderConfig): """BuilderConfig for SROIE""" def __init__(self, **kwargs): """BuilderConfig for SROIE. Args: **kwargs: keyword arguments forwarded to super. """ super(SroieConfig, self).__init__(**kwargs) class Sroie(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ SroieConfig(name="sroie", version=datasets.Version("1.0.0"), description="SROIE dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "words": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["O","B-COMPANY", "I-COMPANY", "B-DATE", "I-DATE", "B-ADDRESS", "I-ADDRESS", "B-TOTAL", "I-TOTAL"] ) ), #"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), "image_path": datasets.Value("string"), } ), supervised_keys=None, citation=_CITATION, homepage="https://arxiv.org/abs/2103.10213", ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" """Uses local files located with data_dir""" downloaded_file = dl_manager.download_and_extract(_URLS) # move files from the second URL together with files from the first one. dest = Path(downloaded_file[0])/"sroie" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test"} ), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) ann_dir = os.path.join(filepath, "tagged") img_dir = os.path.join(filepath, "images") for guid, fname in enumerate(sorted(os.listdir(img_dir))): name, ext = os.path.splitext(fname) file_path = os.path.join(ann_dir, name + ".json") with open(file_path, "r", encoding="utf8") as f: data = json.load(f) image_path = os.path.join(img_dir, fname) image, size = load_image(image_path) boxes = [normalize_bbox(box, size) for box in data["bbox"]] yield guid, {"id": str(guid), "words": data["words"], "bboxes": boxes, "ner_tags": data["labels"], "image_path": image_path}