File size: 7,197 Bytes
b1d4de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# File: huggingface-llama-recipes-main/assisted_decoding.py from transformers import AutoModelForCausalLM, AutoTokenizer import time import torch WARMUP = 2 MAX_NEW_TOKENS = 10 DO_SAMPLE = True ATOL = 1e-06 TORCH_DTYPE = torch.float32 PROMPT = 'Alice and Bob ' CHECKPOINT = 'meta-llama/Meta-Llama-3-405B' ASSISTED_CHECKPOINT = 'meta-llama/Meta-Llama-3.1-8B' model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, device_map='auto', torch_dtype=TORCH_DTYPE) assistant_model = AutoModelForCausalLM.from_pretrained(ASSISTED_CHECKPOINT, device_map='auto', torch_dtype=TORCH_DTYPE) tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT) inputs = tokenizer(PROMPT, return_tensors='pt').to(model.device) for _ in range(WARMUP): model.generate(**inputs, assistant_model=assistant_model) start = time.time() assisted_outputs = model.generate(**inputs, assistant_model=assistant_model) end = time.time() assisted_gen_text = tokenizer.batch_decode(assisted_outputs, skip_special_tokens=True) print(assisted_gen_text) print(f'\nAssisted time taken: {end - start:.2f}s') # File: huggingface-llama-recipes-main/awq_generation.py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig model_id = 'hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4' quantization_config = AwqConfig(bits=4, fuse_max_seq_len=512, do_fuse=True) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='auto', quantization_config=quantization_config) messages = [{'role': 'system', 'content': 'You are a pirate'}, {'role': 'user', 'content': "What's Deep Leaning?"}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt', return_dict=True).to('cuda') outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # File: huggingface-llama-recipes-main/gptq_generation.py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = 'hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4' messages = [{'role': 'system', 'content': 'You are a pirate'}, {'role': 'user', 'content': "What's Deep Leaning?"}] tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='auto') inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt', return_dict=True).to('cuda') outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # File: huggingface-llama-recipes-main/peft_finetuning.py import torch from datasets import load_dataset from trl import SFTTrainer from peft import LoraConfig from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments model_id = 'meta-llama/Meta-Llama-3.1-8B' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) dataset = load_dataset('imdb', split='train') training_args = TrainingArguments(output_dir='./results', num_train_epochs=3, per_device_train_batch_size=4, logging_dir='./logs', logging_steps=10) QLoRA = True if QLoRA: quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type='nf4') lora_config = LoraConfig(r=8, target_modules='all-linear', bias='none', task_type='CAUSAL_LM') else: lora_config = None trainer = SFTTrainer(model=model, tokenizer=tokenizer, args=training_args, peft_config=lora_config, train_dataset=dataset, dataset_text_field='text') trainer.train() # File: huggingface-llama-recipes-main/prompt_reuse.py import os, torch, copy from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache device = 'cuda' ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct' INITIAL_PROMPT = 'From now on, you are going to answer all my questions with historical details. Make sure to always add a bit of french here and there, for style.' model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(ckpt) prompt_cache = DynamicCache() inputs = tokenizer(INITIAL_PROMPT, return_tensors='pt').to('cuda') prompt_cache = model(**inputs, past_key_values=prompt_cache).past_key_values prompt = 'Why are french people obsessed with french?' new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors='pt').to('cuda') past_key_values = copy.deepcopy(prompt_cache) outputs = model.generate(**new_inputs, past_key_values=past_key_values, max_new_tokens=20) response = tokenizer.batch_decode(outputs)[0] print(response) '' prompt = 'What is the best city to swim in?' new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors='pt').to('cuda') outputs = model.generate(**new_inputs, past_key_values=copy.deepcopy(prompt_cache), max_new_tokens=20) response = tokenizer.batch_decode(outputs)[0] print(response) '' # File: huggingface-llama-recipes-main/quantized_cache.py import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = 'cuda' ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct' model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(ckpt) prompt = 'Explain the thre body problem' inputs = tokenizer(prompt, return_tensors='pt').to('cuda') outputs = model.generate(**inputs, cache_implementation='quantized', do_sample=True, max_new_tokens=256) response = tokenizer.batch_decode(outputs)[0] print(response) '' from transformers import QuantizedCacheConfig cache_config = QuantizedCacheConfig(backend='HQQ', nbits=4, axis_key=0, axis_value=1, compute_dtype=torch.float16, device=model.device) out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation='quantized', cache_config=cache_config) print(tokenizer.batch_decode(out, skip_special_tokens=True)) '' # File: huggingface-llama-recipes-main/torch_compile.py import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer os.environ['TOKENIZERS_PARALLELISM'] = 'false' device = 'cuda' ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct' model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16) model.to(device) tokenizer = AutoTokenizer.from_pretrained(ckpt) prompt = 'Why dogs are so cute?' inputs = tokenizer(prompt, return_tensors='pt').to(device) model.generation_config.max_length = 128 outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] print(response) model.forward = torch.compile(model.forward, mode='reduce-overhead', fullgraph=True) model.generation_config.cache_implementation = 'static' outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] outputs = model.generate(**inputs, do_sample=False) response = tokenizer.batch_decode(outputs)[0] print(response) |