File size: 7,197 Bytes
b1d4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# File: huggingface-llama-recipes-main/assisted_decoding.py
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import torch
WARMUP = 2
MAX_NEW_TOKENS = 10
DO_SAMPLE = True
ATOL = 1e-06
TORCH_DTYPE = torch.float32
PROMPT = 'Alice and Bob '
CHECKPOINT = 'meta-llama/Meta-Llama-3-405B'
ASSISTED_CHECKPOINT = 'meta-llama/Meta-Llama-3.1-8B'
model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, device_map='auto', torch_dtype=TORCH_DTYPE)
assistant_model = AutoModelForCausalLM.from_pretrained(ASSISTED_CHECKPOINT, device_map='auto', torch_dtype=TORCH_DTYPE)
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
inputs = tokenizer(PROMPT, return_tensors='pt').to(model.device)
for _ in range(WARMUP):
    model.generate(**inputs, assistant_model=assistant_model)
start = time.time()
assisted_outputs = model.generate(**inputs, assistant_model=assistant_model)
end = time.time()
assisted_gen_text = tokenizer.batch_decode(assisted_outputs, skip_special_tokens=True)
print(assisted_gen_text)
print(f'\nAssisted time taken: {end - start:.2f}s')

# File: huggingface-llama-recipes-main/awq_generation.py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
model_id = 'hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4'
quantization_config = AwqConfig(bits=4, fuse_max_seq_len=512, do_fuse=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='auto', quantization_config=quantization_config)
messages = [{'role': 'system', 'content': 'You are a pirate'}, {'role': 'user', 'content': "What's Deep Leaning?"}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt', return_dict=True).to('cuda')
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# File: huggingface-llama-recipes-main/gptq_generation.py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = 'hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4'
messages = [{'role': 'system', 'content': 'You are a pirate'}, {'role': 'user', 'content': "What's Deep Leaning?"}]
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map='auto')
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt', return_dict=True).to('cuda')
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# File: huggingface-llama-recipes-main/peft_finetuning.py
import torch
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments
model_id = 'meta-llama/Meta-Llama-3.1-8B'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
dataset = load_dataset('imdb', split='train')
training_args = TrainingArguments(output_dir='./results', num_train_epochs=3, per_device_train_batch_size=4, logging_dir='./logs', logging_steps=10)
QLoRA = True
if QLoRA:
    quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type='nf4')
    lora_config = LoraConfig(r=8, target_modules='all-linear', bias='none', task_type='CAUSAL_LM')
else:
    lora_config = None
trainer = SFTTrainer(model=model, tokenizer=tokenizer, args=training_args, peft_config=lora_config, train_dataset=dataset, dataset_text_field='text')
trainer.train()

# File: huggingface-llama-recipes-main/prompt_reuse.py
import os, torch, copy
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache
device = 'cuda'
ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
INITIAL_PROMPT = 'From now on, you are going to answer all my questions with historical details. Make sure to always add a bit of french here and there, for style.'
model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(ckpt)
prompt_cache = DynamicCache()
inputs = tokenizer(INITIAL_PROMPT, return_tensors='pt').to('cuda')
prompt_cache = model(**inputs, past_key_values=prompt_cache).past_key_values
prompt = 'Why are french people obsessed with french?'
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors='pt').to('cuda')
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values, max_new_tokens=20)
response = tokenizer.batch_decode(outputs)[0]
print(response)
''
prompt = 'What is the best city to swim in?'
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors='pt').to('cuda')
outputs = model.generate(**new_inputs, past_key_values=copy.deepcopy(prompt_cache), max_new_tokens=20)
response = tokenizer.batch_decode(outputs)[0]
print(response)
''

# File: huggingface-llama-recipes-main/quantized_cache.py
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = 'cuda'
ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(ckpt)
prompt = 'Explain the thre body problem'
inputs = tokenizer(prompt, return_tensors='pt').to('cuda')
outputs = model.generate(**inputs, cache_implementation='quantized', do_sample=True, max_new_tokens=256)
response = tokenizer.batch_decode(outputs)[0]
print(response)
''
from transformers import QuantizedCacheConfig
cache_config = QuantizedCacheConfig(backend='HQQ', nbits=4, axis_key=0, axis_value=1, compute_dtype=torch.float16, device=model.device)
out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation='quantized', cache_config=cache_config)
print(tokenizer.batch_decode(out, skip_special_tokens=True))
''

# File: huggingface-llama-recipes-main/torch_compile.py
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
device = 'cuda'
ckpt = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(ckpt)
prompt = 'Why dogs are so cute?'
inputs = tokenizer(prompt, return_tensors='pt').to(device)
model.generation_config.max_length = 128
outputs = model.generate(**inputs, do_sample=False)
response = tokenizer.batch_decode(outputs)[0]
print(response)
model.forward = torch.compile(model.forward, mode='reduce-overhead', fullgraph=True)
model.generation_config.cache_implementation = 'static'
outputs = model.generate(**inputs, do_sample=False)
response = tokenizer.batch_decode(outputs)[0]
outputs = model.generate(**inputs, do_sample=False)
response = tokenizer.batch_decode(outputs)[0]
outputs = model.generate(**inputs, do_sample=False)
response = tokenizer.batch_decode(outputs)[0]
print(response)