File size: 2,603 Bytes
0610ccb
 
 
 
 
 
 
 
 
 
c09df83
0610ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import pathlib
from typing import overload
import datasets
import json

from datasets.info import DatasetInfo

_VERSION = "0.0.1"

_URL= "https://fcheck.fel.cvut.cz/downloads/NLI/anli_v1.0_cs_google_translate/R3/"

_URLS = {
    "train": _URL + "train.jsonl",
    "validation": _URL + "dev.jsonl",
    "test": _URL + "test.jsonl"
}

_DESCRIPTION = """\
TODO: Anli_cs is a Czech translation of the Adversarial NLI dataset 
"""

_CITATION = """\
todo
"""

_LABEL_CONVERSION = {
    "n": "NOT ENOUGH INFO",
    "e": "SUPPORTS",
    "c": "REFUTES"
}

datasets.utils.version.Version
class AnliCs(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=["REFUTES", "NOT ENOUGH INFO", "SUPPORTS"]),
                    # datasets.features.Sequence({"text": datasets.Value("string"),"answer_start": datasets.Value("int32"),})
                    "evidence": datasets.Value("string"),
                    "claim": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            version=_VERSION,
            homepage="https://fcheck.fel.cvut.cz/dataset/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(datasets.Split.TRAIN, {
                "filepath": downloaded_files["train"]
            }),
            datasets.SplitGenerator(datasets.Split.VALIDATION, {
                "filepath": downloaded_files["validation"]
            }),
            datasets.SplitGenerator(datasets.Split.TEST, {
                "filepath": downloaded_files["test"]
            }),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        key = 0
        with open(filepath, encoding="utf-8") as f:
            for line in f:
                datapoint = json.loads(line)
                yield key, {
                    "id": datapoint["uid"],
                    "evidence": datapoint["context"],
                    "claim": datapoint["hypothesis"],
                    "label": _LABEL_CONVERSION[datapoint["label"]]
                }
                key += 1