--- license: cc-by-nc-4.0 --- 🚨 New Dataset Version Released! We are excited to announce the release of Version [1.1] of our dataset! This update includes: [L2A & L1C support]. [Temporal support]. [Check the data without downloading (Cloud-optimized properties)]. 📥 Go to: https://huggingface.co/datasets/tacofoundation/cloudsen12 and follow the instructions in colab # **CloudSEN12 NOLABEL** ## **A Benchmark Dataset for Cloud Semantic Understanding** # **CloudSEN12 SCRIBBLE** ## **A Benchmark Dataset for Cloud Semantic Understanding** ![CloudSEN12 Images](https://cloudsen12.github.io/thumbnails/cloudsen12.gif) CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge cloud detection algorithms. CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our paper. Ready to start using **[CloudSEN12](https://cloudsen12.github.io/)**? **[Download Dataset](https://cloudsen12.github.io/download.html)** **[Paper - Scientific Data](https://www.nature.com/articles/s41597-022-01878-2)** **[Inference on a new S2 image](https://colab.research.google.com/github/cloudsen12/examples/blob/master/example02.ipynb)** **[Enter to cloudApp](https://github.com/cloudsen12/CloudApp)** **[CloudSEN12 in Google Earth Engine](https://gee-community-catalog.org/projects/cloudsen12/)**
### **Description**
| File | Name | Scale | Wavelength | Description | Datatype | |---------------|-----------------|--------|------------------------------|------------------------------------------------------------------------------------------------------|----------| | L1C_ & L2A_ | B1 | 0.0001 | 443.9nm (S2A) / 442.3nm (S2B)| Aerosols. | np.int16 | | | B2 | 0.0001 | 496.6nm (S2A) / 492.1nm (S2B)| Blue. | np.int16 | | | B3 | 0.0001 | 560nm (S2A) / 559nm (S2B) | Green. | np.int16 | | | B4 | 0.0001 | 664.5nm (S2A) / 665nm (S2B) | Red. | np.int16 | | | B5 | 0.0001 | 703.9nm (S2A) / 703.8nm (S2B)| Red Edge 1. | np.int16 | | | B6 | 0.0001 | 740.2nm (S2A) / 739.1nm (S2B)| Red Edge 2. | np.int16 | | | B7 | 0.0001 | 782.5nm (S2A) / 779.7nm (S2B)| Red Edge 3. | np.int16 | | | B8 | 0.0001 | 835.1nm (S2A) / 833nm (S2B) | NIR. | np.int16 | | | B8A | 0.0001 | 864.8nm (S2A) / 864nm (S2B) | Red Edge 4. | np.int16 | | | B9 | 0.0001 | 945nm (S2A) / 943.2nm (S2B) | Water vapor. | np.int16 | | | B11 | 0.0001 | 1613.7nm (S2A) / 1610.4nm (S2B)| SWIR 1. | np.int16 | | | B12 | 0.0001 | 2202.4nm (S2A) / 2185.7nm (S2B)| SWIR 2. | np.int16 | | L1C_ | B10 | 0.0001 | 1373.5nm (S2A) / 1376.9nm (S2B)| Cirrus. | np.int16 | | L2A_ | AOT | 0.001 | - | Aerosol Optical Thickness. | np.int16 | | | WVP | 0.001 | - | Water Vapor Pressure. | np.int16 | | | TCI_R | 1 | - | True Color Image, Red. | np.int16 | | | TCI_G | 1 | - | True Color Image, Green. | np.int16 | | | TCI_B | 1 | - | True Color Image, Blue. | np.int16 | | S1_ | VV | 1 | 5.405GHz | Dual-band cross-polarization, vertical transmit/horizontal receive. |np.float32| | | VH | 1 | 5.405GHz | Single co-polarization, vertical transmit/vertical receive. |np.float32| | | angle | 1 | - | Incidence angle generated by interpolating the ‘incidenceAngle’ property. |np.float32| | EXTRA_ | CDI | 0.0001 | - | Cloud Displacement Index. | np.int16 | | | Shwdirection | 0.01 | - | Azimuth. Values range from 0°- 360°. | np.int16 | | | elevation | 1 | - | Elevation in meters. Obtained from MERIT Hydro datasets. | np.int16 | | | ocurrence | 1 | - | JRC Global Surface Water. The frequency with which water was present. | np.int16 | | | LC100 | 1 | - | Copernicus land cover product. CGLS-LC100 Collection 3. | np.int16 | | | LC10 | 1 | - | ESA WorldCover 10m v100 product. | np.int16 | | LABEL_ | fmask | 1 | - | Fmask4.0 cloud masking. | np.int16 | | | QA60 | 1 | - | SEN2 Level-1C cloud mask. | np.int8 | | | s2cloudless | 1 | - | sen2cloudless results. | np.int8 | | | sen2cor | 1 | - | Scene Classification band. Obtained from SEN2 level 2A. | np.int8 | | | cd_fcnn_rgbi | 1 | - | López-Puigdollers et al. results based on RGBI bands. | np.int8 | | |cd_fcnn_rgbi_swir| 1 | - | López-Puigdollers et al. results based on RGBISWIR bands. | np.int8 | | | kappamask_L1C | 1 | - | KappaMask results using SEN2 level L1C as input. | np.int8 | | | kappamask_L2A | 1 | - | KappaMask results using SEN2 level L2A as input. | np.int8 | | | manual_hq | 1 | | High-quality pixel-wise manual annotation. | np.int8 | | | manual_sc | 1 | | Scribble manual annotation. | np.int8 |
### **Label Description** | **CloudSEN12** | **KappaMask** | **Sen2Cor** | **Fmask** | **s2cloudless** | **CD-FCNN** | **QA60** | |------------------|------------------|-------------------------|-----------------|-----------------------|---------------------|--------------------| | 0 Clear | 1 Clear | 4 Vegetation | 0 Clear land | 0 Clear | 0 Clear | 0 Clear | | | | 2 Dark area pixels | 1 Clear water | | | | | | | 5 Bare Soils | 3 Snow | | | | | | | 6 Water | | | | | | | | 11 Snow | | | | | | 1 Thick cloud | 4 Cloud | 8 Cloud medium probability | 4 Cloud | 1 Cloud | 1 Cloud | 1024 Opaque cloud | | | | 9 Cloud high probability | | | | | | 2 Thin cloud | 3 Semi-transparent cloud | 10 Thin cirrus | | | | 2048 Cirrus cloud | | 3 Cloud shadow | 2 Cloud shadow | 3 Cloud shadows | 2 Cloud shadow | | | |
### **np.memmap shape information**
**train shape: (8785, 512, 512)**
**val shape: (560, 512, 512)**
**test shape: (655, 512, 512)**
### **Example**
```py import numpy as np # Read high-quality train train_shape = (8785, 512, 512) B4X = np.memmap('train/L1C_B04.dat', dtype='int16', mode='r', shape=train_shape) y = np.memmap('train/manual_hq.dat', dtype='int8', mode='r', shape=train_shape) # Read high-quality val val_shape = (560, 512, 512) B4X = np.memmap('val/L1C_B04.dat', dtype='int16', mode='r', shape=val_shape) y = np.memmap('val/manual_hq.dat', dtype='int8', mode='r', shape=val_shape) # Read high-quality test test_shape = (655, 512, 512) B4X = np.memmap('test/L1C_B04.dat', dtype='int16', mode='r', shape=test_shape) y = np.memmap('test/manual_hq.dat', dtype='int8', mode='r', shape=test_shape) ```
This work has been partially supported by the Spanish Ministry of Science and Innovation project PID2019-109026RB-I00 (MINECO-ERDF) and the Austrian Space Applications Programme within the **[SemantiX project](https://austria-in-space.at/en/projects/2019/semantix.php)**.