Datasets:

Modalities:
Tabular
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
eustache-crto commited on
Commit
607b465
·
verified ·
1 Parent(s): 21d76f0

Upload 2 files

Browse files
Experiments.ipynb ADDED
@@ -0,0 +1,725 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Attribution Modeling Increases Efficiency of Bidding in Display Advertising\n",
8
+ "Eustache Diemert*, Julien Meynet* (Criteo Research), Damien Lefortier (Facebook), Pierre Galland (Criteo)\n",
9
+ "*authors contributed equally.\n",
10
+ "\n",
11
+ "This work was published in:\n",
12
+ "[2017 AdKDD & TargetAd Workshop, in conjunction with\n",
13
+ "The 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2017)](https://adkdd17.wixsite.com/adkddtargetad2017)"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "markdown",
18
+ "metadata": {},
19
+ "source": [
20
+ " * This code includes all needed material to reproduce results reported in the paper. This dataset can also be used for further research like: testing alternative attribution models, offline metrics, etc..\n",
21
+ " * For details about the content of the Dataset, refer to the README file"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "markdown",
26
+ "metadata": {},
27
+ "source": [
28
+ "# Preprocessing"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": null,
34
+ "metadata": {
35
+ "collapsed": false
36
+ },
37
+ "outputs": [],
38
+ "source": [
39
+ "%pylab inline\n",
40
+ "import pandas as pd\n",
41
+ "plt.style.use('ggplot')\n",
42
+ "from scipy.optimize import minimize"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "collapsed": true
50
+ },
51
+ "outputs": [],
52
+ "source": [
53
+ "DATA_FILE='criteo_attribution_dataset.tsv.gz'\n",
54
+ "df = pd.read_csv(DATA_FILE, sep='\\t', compression='gzip')"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "metadata": {
61
+ "collapsed": true
62
+ },
63
+ "outputs": [],
64
+ "source": [
65
+ "df['day'] = np.floor(df.timestamp / 86400.).astype(int)"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "metadata": {
72
+ "collapsed": false
73
+ },
74
+ "outputs": [],
75
+ "source": [
76
+ "df.day.hist(bins=len(df.day.unique()))"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": null,
82
+ "metadata": {
83
+ "collapsed": true
84
+ },
85
+ "outputs": [],
86
+ "source": [
87
+ "df['gap_click_sale'] = -1\n",
88
+ "df.loc[df.conversion == 1, 'gap_click_sale'] = df.conversion_timestamp - df.timestamp"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {
95
+ "collapsed": true
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "FEATURES = ['campaign', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', \n",
100
+ " 'cat7', 'cat8']\n",
101
+ "INFOS = ['cost', 'cpo', 'time_since_last_click']"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "markdown",
106
+ "metadata": {},
107
+ "source": [
108
+ "## Labels"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "metadata": {
115
+ "collapsed": true
116
+ },
117
+ "outputs": [],
118
+ "source": [
119
+ "df['last_click'] = df.attribution * (df.click_pos == df.click_nb - 1).astype(int)\n",
120
+ "df['first_click'] = df.attribution * (df.click_pos == 0).astype(int)\n",
121
+ "df['all_clicks'] = df.attribution\n",
122
+ "df['uniform'] = df.attribution / (df.click_nb).astype(float)\n",
123
+ "INFOS += ['last_click', 'first_click', 'all_clicks', 'uniform']"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "markdown",
128
+ "metadata": {},
129
+ "source": [
130
+ "# Learning / Validation"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": null,
136
+ "metadata": {
137
+ "collapsed": true
138
+ },
139
+ "outputs": [],
140
+ "source": [
141
+ "from sklearn.linear_model import LogisticRegression\n",
142
+ "from sklearn.feature_extraction import FeatureHasher\n",
143
+ "from sklearn.metrics import log_loss"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": null,
149
+ "metadata": {
150
+ "collapsed": true
151
+ },
152
+ "outputs": [],
153
+ "source": [
154
+ "def bootstrap(data, num_samples, statistic, alpha):\n",
155
+ " \"\"\"Returns bootstrap estimate of 100.0*(1-alpha) CI for statistic.\"\"\"\n",
156
+ " n = len(data)\n",
157
+ " data = np.array(data)\n",
158
+ " stats = []\n",
159
+ " for _ in range(num_samples):\n",
160
+ " idx = np.random.randint(0, n, n)\n",
161
+ " samples = data[idx]\n",
162
+ " stats += [statistic(samples)]\n",
163
+ " stats = np.array(sorted(stats))\n",
164
+ " return (stats[int((alpha/2.0)*num_samples)],\n",
165
+ " stats[int((1-alpha/2.0)*num_samples)])"
166
+ ]
167
+ },
168
+ {
169
+ "cell_type": "markdown",
170
+ "metadata": {},
171
+ "source": [
172
+ "## Attribution model\n",
173
+ "Learns exponential decay lambda parameter"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": null,
179
+ "metadata": {
180
+ "collapsed": true
181
+ },
182
+ "outputs": [],
183
+ "source": [
184
+ "def attr_nllh(l,x,y):\n",
185
+ " loss = 0.0\n",
186
+ " lamb = l[0]\n",
187
+ " n = x.shape[0]\n",
188
+ " for i in range(n):\n",
189
+ " if y[i] == 1:\n",
190
+ " loss += lamb*x[i]\n",
191
+ " else:\n",
192
+ " loss -= np.log(1 - np.exp(-lamb*x[i])) \n",
193
+ " return loss/float(n)\n",
194
+ "\n",
195
+ "def attr_nllh_grad(l,x,y):\n",
196
+ " grad = 0.0\n",
197
+ " lamb = l[0]\n",
198
+ " n = x.shape[0]\n",
199
+ " for i in range(n):\n",
200
+ " grad += x[i]*y[i] / (1 - np.exp(-lamb*x[i]))\n",
201
+ " return np.array([grad/float(n)])\n",
202
+ "\n",
203
+ "\n",
204
+ "def optimize_lambda(tts, attrib):\n",
205
+ " return minimize(attr_nllh, 1e-3, method='L-BFGS-B', jac=attr_nllh_grad, \n",
206
+ " options={'disp': True, 'maxiter': 20 }, bounds=((1e-15, 1e-4),), \n",
207
+ " args=(tts,attrib)).x[0]\n",
208
+ "\n",
209
+ "def learn_attribution_model(df_view, test_day, learning_duration, \n",
210
+ " verbose=False, ci=False, rescale=1., \n",
211
+ " optimizer=optimize_lambda):\n",
212
+ " df_train = df_view[(df_view.day >= test_day - learning_duration) & (df_view.day < test_day)]\n",
213
+ " df_conv = df_train[df_train.click_pos == df_train.click_nb - 1]\n",
214
+ " x = df_conv.gap_click_sale.values\n",
215
+ " y = df_conv.attribution.values \n",
216
+ " \n",
217
+ " avg_tts = x.mean()\n",
218
+ " tts_ci = bootstrap(x, 100, np.mean, .05)\n",
219
+ " tts_ci = tts_ci[1] - tts_ci[0]\n",
220
+ "\n",
221
+ " lamb = optimize_lambda(x, y)\n",
222
+ " \n",
223
+ " lambs = []\n",
224
+ " n_bootstraps = 30\n",
225
+ " alpha=.05\n",
226
+ " if ci:\n",
227
+ " for _ in range(n_bootstraps):\n",
228
+ " idx = np.random.randint(0, x.shape[0], x.shape)\n",
229
+ " xx = x[idx]\n",
230
+ " yy = y[idx]\n",
231
+ " lambs += [optimize_lambda(xx, yy)]\n",
232
+ "\n",
233
+ " if verbose:\n",
234
+ " print('\\t\\t-avg_tts', avg_tts, '+/-', tts_ci, \n",
235
+ " ' = ', avg_tts / 3600., 'hours = ', avg_tts / 86400., 'days')\n",
236
+ " if ci:\n",
237
+ " print('\\t\\t-lambda', lamb, '+/-', (lambs[int((1-alpha/2.)*n_bootstraps)] - lambs[int((alpha/2.)*n_bootstraps)]))\n",
238
+ " else:\n",
239
+ " print('\\t\\t-lambda', lamb)\n",
240
+ " \n",
241
+ " return avg_tts, lamb"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "code",
246
+ "execution_count": null,
247
+ "metadata": {
248
+ "collapsed": false
249
+ },
250
+ "outputs": [],
251
+ "source": [
252
+ "global_avg_tts, global_lamb = learn_attribution_model(df, 21, 20)"
253
+ ]
254
+ },
255
+ {
256
+ "cell_type": "markdown",
257
+ "metadata": {},
258
+ "source": [
259
+ "## Compute AA attributions on full dataset\n",
260
+ "As explained in the paper, the exponential decay parameter is satble throughout the days. For reducing computation complexity we compute the exponential-based attributions on the full dataset."
261
+ ]
262
+ },
263
+ {
264
+ "cell_type": "code",
265
+ "execution_count": null,
266
+ "metadata": {
267
+ "collapsed": true
268
+ },
269
+ "outputs": [],
270
+ "source": [
271
+ "def compute_aa_attributions(test_info, normalize=True):\n",
272
+ " test_info['idx'] = test_info.index\n",
273
+ " converted = test_info[test_info.all_clicks==1]\n",
274
+ " # to propoerly compute normalized attribution factors, we have to reconstruct the timelines for each conversion\n",
275
+ " conversion_ids = converted['conversion_id'].unique()\n",
276
+ " # now reconstruct timeline and apply attribution\n",
277
+ " by_conversion = converted[['conversion_id', 'timestamp', 'idx', 'bf_pred', 'time_since_last_click', 'last_click']].groupby('conversion_id')\n",
278
+ " new_clicks_data = []\n",
279
+ " \n",
280
+ " s_attr = []\n",
281
+ " s_attr_lc = []\n",
282
+ " # for each conversion compute attribution for each click\n",
283
+ " for conv, evts in by_conversion:\n",
284
+ " sorted_clicks = sorted(evts.values.tolist(), key=lambda x: x[1])\n",
285
+ " bf_pred = [_[3] for _ in sorted_clicks]\n",
286
+ " sum_bf = np.sum(bf_pred)\n",
287
+ " sum_lc = np.sum([_[5] for _ in sorted_clicks])\n",
288
+ " sum_attr = 0.0\n",
289
+ " for pos, (_, _, idx_, bf_, tslc_, lc_) in enumerate(sorted_clicks):\n",
290
+ " aa_attr = bf_pred[pos]\n",
291
+ " if normalize:\n",
292
+ " if sum_bf>0.0:\n",
293
+ " aa_attr/=sum_bf\n",
294
+ " else:\n",
295
+ " aa_attr = 0.0\n",
296
+ " sum_attr += aa_attr\n",
297
+ " new_clicks_data.append((idx_, aa_attr))\n",
298
+ " s_attr.append(sum_attr)\n",
299
+ " s_attr_lc.append(sum_lc)\n",
300
+ " \n",
301
+ " # now for each click, apply attribution from computed data\n",
302
+ " new_clicks_df = pd.DataFrame(columns=['click_idx', 'aa_attribution'])\n",
303
+ " cidx, attr = zip(*new_clicks_data)\n",
304
+ " new_clicks_df['click_idx'] = cidx\n",
305
+ " new_clicks_df['aa_attribution'] = attr\n",
306
+ " new_clicks_df = new_clicks_df.set_index('click_idx')\n",
307
+ " joined = test_info.join(new_clicks_df)\n",
308
+ " joined['aa_attribution'] = joined['aa_attribution'].fillna(value = 0.0)\n",
309
+ " return joined['aa_attribution']"
310
+ ]
311
+ },
312
+ {
313
+ "cell_type": "code",
314
+ "execution_count": null,
315
+ "metadata": {
316
+ "collapsed": false
317
+ },
318
+ "outputs": [],
319
+ "source": [
320
+ "#learn global attribution model\n",
321
+ "avg_tts, lamb = learn_attribution_model(df, 21, 20)"
322
+ ]
323
+ },
324
+ {
325
+ "cell_type": "code",
326
+ "execution_count": null,
327
+ "metadata": {
328
+ "collapsed": false
329
+ },
330
+ "outputs": [],
331
+ "source": [
332
+ "# compute the bid factor from aa attribution for each display\n",
333
+ "gap_test = df.time_since_last_click.values\n",
334
+ "previous_tslc_mask = (df.time_since_last_click >=0).astype(float)\n",
335
+ "attr_pred = np.exp(-lamb*gap_test)\n",
336
+ "attr_pred *= previous_tslc_mask\n",
337
+ "bf_pred = 1 - attr_pred\n",
338
+ "df['bf_pred'] = bf_pred\n",
339
+ "df['AA_normed'] = compute_aa_attributions(df, normalize=True)\n",
340
+ "df['AA_not_normed'] = compute_aa_attributions(df, normalize=False)\n",
341
+ "INFOS += ['bf_pred', 'AA_normed', 'AA_not_normed']"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "markdown",
346
+ "metadata": {},
347
+ "source": [
348
+ "## Validation Code\n",
349
+ "Utility methods for performing validation (test on 1 day, learn on previous x days and slide)"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": null,
355
+ "metadata": {
356
+ "collapsed": true
357
+ },
358
+ "outputs": [],
359
+ "source": [
360
+ "def get_train_test_slice(df_view, test_day, learning_duration, label, features=None, \n",
361
+ " hash_space=2**24, nrows=None, infos=None):\n",
362
+ " df_test = df_view[df_view.day == test_day]\n",
363
+ " if nrows is not None:\n",
364
+ " df_test = df_test[:nrows]\n",
365
+ " if features is None:\n",
366
+ " features = FEATURES\n",
367
+ " if infos is None:\n",
368
+ " infos = INFOS\n",
369
+ " df_train = df_view[(df_view.day >= test_day - learning_duration) & (df_view.day < test_day)]\n",
370
+ " if nrows is not None:\n",
371
+ " df_train = df_train[:nrows]\n",
372
+ " \n",
373
+ " X_train = df_train[features]\n",
374
+ " X_test = df_test[features]\n",
375
+ " \n",
376
+ " hasher = FeatureHasher(n_features=hash_space, non_negative=1)\n",
377
+ " \n",
378
+ " def to_dict_values(df_view):\n",
379
+ " return [dict([(_[0]+str(_[1]),1) for _ in zip(features,l)]) for l in df_view.values]\n",
380
+ " \n",
381
+ " X_train_h = hasher.fit_transform(to_dict_values(X_train))\n",
382
+ " X_test_h = hasher.transform(to_dict_values(X_test))\n",
383
+ " y_train = df_train[label]\n",
384
+ " y_test = df_test[label]\n",
385
+ " return (X_train_h, y_train), (X_test_h, y_test), df_test[infos], df_train.last_click.mean()"
386
+ ]
387
+ },
388
+ {
389
+ "cell_type": "markdown",
390
+ "metadata": {
391
+ "collapsed": true
392
+ },
393
+ "source": [
394
+ "### Compute Utilities"
395
+ ]
396
+ },
397
+ {
398
+ "cell_type": "code",
399
+ "execution_count": null,
400
+ "metadata": {
401
+ "collapsed": true
402
+ },
403
+ "outputs": [],
404
+ "source": [
405
+ "from scipy.special import gammainc\n",
406
+ "def empirical_utility(a, v, c, p):\n",
407
+ " won = np.array(p*v > c, dtype=np.int)\n",
408
+ " return (a*v)*won, -c*won\n",
409
+ "\n",
410
+ "def expected_utility(a, v, c, p, beta=1000):\n",
411
+ " return a*v*gammainc(beta*c+1, beta*p*v) - ((beta*c+1)/beta)*gammainc(beta*c+2, beta*p*v)"
412
+ ]
413
+ },
414
+ {
415
+ "cell_type": "code",
416
+ "execution_count": null,
417
+ "metadata": {
418
+ "collapsed": true
419
+ },
420
+ "outputs": [],
421
+ "source": [
422
+ "def evaluate_utility(y_pred, utilities, betas, test_info):\n",
423
+ " partial_score = dict()\n",
424
+ " for utility in utilities:\n",
425
+ " attribution = test_info[utility]\n",
426
+ " for beta in betas:\n",
427
+ " if np.isinf(beta):\n",
428
+ " est_utility = empirical_utility(attribution, test_info.cpo, test_info.cost, y_pred)\n",
429
+ " else:\n",
430
+ " est_utility = expected_utility(attribution, test_info.cpo, test_info.cost, y_pred, beta=beta)\n",
431
+ " beta_str = str(beta) if not np.isinf(beta) else 'inf'\n",
432
+ " partial_score['utility-'+utility+'-beta'+beta_str] = est_utility\n",
433
+ " return partial_score"
434
+ ]
435
+ },
436
+ {
437
+ "cell_type": "code",
438
+ "execution_count": null,
439
+ "metadata": {
440
+ "collapsed": true
441
+ },
442
+ "outputs": [],
443
+ "source": [
444
+ "def get_naive_baseline(y_train, X_test):\n",
445
+ " return np.mean(y_train)*np.ones(X_test.shape[0])"
446
+ ]
447
+ },
448
+ {
449
+ "cell_type": "code",
450
+ "execution_count": null,
451
+ "metadata": {
452
+ "collapsed": true
453
+ },
454
+ "outputs": [],
455
+ "source": [
456
+ "def evaluate_day_for_bidder(df_view, test_day, learning_duration, bidder, utilities, betas,\n",
457
+ " hash_space=None, features=None, clf=None, AA_bidder_label=None, recalibrate=True):\n",
458
+ " score = dict()\n",
459
+ " bid_profile = dict()\n",
460
+ " label = bidder\n",
461
+ " if bidder == 'AA':\n",
462
+ " label = AA_bidder_label\n",
463
+ " # get data slice\n",
464
+ " (X_train, y_train), (X_test, y_test), test_info, y_train_lc_mean = get_train_test_slice(df_view,\n",
465
+ " test_day,\n",
466
+ " learning_duration,\n",
467
+ " label=label, \n",
468
+ " hash_space = hash_space,\n",
469
+ " features=features) \n",
470
+ " \n",
471
+ " # learn the model\n",
472
+ " clf.fit(X_train, y_train)\n",
473
+ " \n",
474
+ " # get test predictions\n",
475
+ " y_pred = clf.predict_proba(X_test)[:,1] \n",
476
+ " \n",
477
+ " # if aa bidder: modulate the bids by bid_factor computed from attribution model\n",
478
+ " if bidder == 'AA':\n",
479
+ " y_pred *= test_info['bf_pred']\n",
480
+ " \n",
481
+ " # compute the loss\n",
482
+ " loss = log_loss(y_test, y_pred, normalize=0)\n",
483
+ " \n",
484
+ " # loss of baseline model\n",
485
+ " baseline_loss = log_loss(y_test, get_naive_baseline(y_train, X_test), normalize=0)\n",
486
+ " score['nllh'] = loss\n",
487
+ " score['nllh_naive'] = baseline_loss\n",
488
+ " \n",
489
+ " # do we recalibrate output? (i.e recalibrate mean prediction). This is usually done by a control system.\n",
490
+ " if recalibrate:\n",
491
+ " y_pred *= (y_train_lc_mean / y_pred.mean())\n",
492
+ " \n",
493
+ " #how many displays are won?\n",
494
+ " won = (y_pred*test_info.cpo > test_info.cost).astype(int)\n",
495
+ " score['won'] = np.sum(won)\n",
496
+ " score['n_auctions'] = y_pred.shape[0]\n",
497
+ " \n",
498
+ " # compute the scores on this slice\n",
499
+ " score.update(evaluate_utility(y_pred, utilities, betas, test_info))\n",
500
+ " \n",
501
+ " #store bid profiles\n",
502
+ " bid_profile['time_since_last_click'] = test_info.time_since_last_click\n",
503
+ " bid_profile['bid'] = y_pred\n",
504
+ " \n",
505
+ " return score, bid_profile"
506
+ ]
507
+ },
508
+ {
509
+ "cell_type": "markdown",
510
+ "metadata": {},
511
+ "source": [
512
+ "#### Simple utility functions to manipulate scores"
513
+ ]
514
+ },
515
+ {
516
+ "cell_type": "code",
517
+ "execution_count": null,
518
+ "metadata": {
519
+ "collapsed": true
520
+ },
521
+ "outputs": [],
522
+ "source": [
523
+ "def merge_utility_score(score):\n",
524
+ " updates = dict()\n",
525
+ " for k,v in score.items():\n",
526
+ " if not 'utility' in k:\n",
527
+ " continue\n",
528
+ " if 'inf' in k:\n",
529
+ " revenue, cost = v\n",
530
+ " updates[k] = np.sum(cost) + np.sum(revenue)\n",
531
+ " updates[k+'~revenue'] = np.sum(revenue)\n",
532
+ " updates[k+'~cost'] = np.sum(cost)\n",
533
+ " v = revenue + cost\n",
534
+ " else:\n",
535
+ " updates[k] = np.sum(v)\n",
536
+ " bounds = bootstrap(v, 100, np.sum, .05)\n",
537
+ " delta = (bounds[1]-bounds[0])/2.\n",
538
+ " updates[k+'-delta'] = delta\n",
539
+ " score.update(updates)"
540
+ ]
541
+ },
542
+ {
543
+ "cell_type": "code",
544
+ "execution_count": null,
545
+ "metadata": {
546
+ "collapsed": true
547
+ },
548
+ "outputs": [],
549
+ "source": [
550
+ "def update_score(partial_score, score):\n",
551
+ " for k, v in partial_score.items():\n",
552
+ " if 'utility' in k:\n",
553
+ " if 'inf' in k:\n",
554
+ " revenue, cost = v\n",
555
+ " print('\\t\\t', k, np.sum(cost)+np.sum(revenue))\n",
556
+ " current_revenue, current_cost = score.get(k, (np.array([]),np.array([])))\n",
557
+ " score[k] = (\n",
558
+ " np.append(current_revenue, revenue),\n",
559
+ " np.append(current_cost, cost)\n",
560
+ " )\n",
561
+ " else:\n",
562
+ " print('\\t\\t', k, np.sum(v))\n",
563
+ " score[k] = np.append(score.get(k, np.array([])), v)\n",
564
+ " else:\n",
565
+ " print('\\t\\t', k, v)\n",
566
+ " score[k] = score.get(k, 0) + v"
567
+ ]
568
+ },
569
+ {
570
+ "cell_type": "markdown",
571
+ "metadata": {
572
+ "collapsed": true
573
+ },
574
+ "source": [
575
+ "### Evaluate several bidders on several utility metric variants"
576
+ ]
577
+ },
578
+ {
579
+ "cell_type": "code",
580
+ "execution_count": null,
581
+ "metadata": {
582
+ "collapsed": true
583
+ },
584
+ "outputs": [],
585
+ "source": [
586
+ "from datetime import datetime, timedelta\n",
587
+ "def evaluate_slices(df_view,\n",
588
+ " bidders=['last_click', 'first_click', 'AA'],\n",
589
+ " utilities=['last_click','first_click', 'AA_normed', 'AA_not_normed'],\n",
590
+ " betas=[np.inf, 10, 1000],\n",
591
+ " test_days=[22],\n",
592
+ " learning_duration=21,\n",
593
+ " hash_space=2**24,\n",
594
+ " features=None,\n",
595
+ " AA_bidder_label='all_clicks',\n",
596
+ " clf = LogisticRegression(solver='lbfgs', n_jobs=4),\n",
597
+ " recalibrate = True):\n",
598
+ " bid_profiles = []\n",
599
+ " scores = []\n",
600
+ " for bidder in bidders:\n",
601
+ " print ('*'*80)\n",
602
+ " print(\"EVALUATING BIDDER:\", bidder)\n",
603
+ " score = dict()\n",
604
+ " bid_profile = dict()\n",
605
+ " for test_day in test_days:\n",
606
+ " start = datetime.now()\n",
607
+ " print('\\t- day:', test_day)\n",
608
+ " partial_score, partial_bid_profile = evaluate_day_for_bidder(\n",
609
+ " df_view, test_day, learning_duration, bidder, \n",
610
+ " utilities, betas,\n",
611
+ " hash_space=hash_space, features=features, clf=clf, \n",
612
+ " AA_bidder_label=AA_bidder_label, recalibrate=recalibrate\n",
613
+ " )\n",
614
+ " update_score(partial_score, score)\n",
615
+ " for k, v in partial_bid_profile.items():\n",
616
+ " bid_profile[k] = np.append(bid_profile.get(k, np.array([])), v)\n",
617
+ " print('\\t- took', datetime.now() - start)\n",
618
+ " score['bidder'] = bidder\n",
619
+ " bid_profile['bidder'] = bidder\n",
620
+ " score['nllh_comp_vn'] = (score['nllh_naive'] - score['nllh']) / np.abs(score['nllh_naive'])\n",
621
+ " score['win_rate'] = score['won'] / score['n_auctions']\n",
622
+ " merge_utility_score(score)\n",
623
+ " scores.append(score)\n",
624
+ " bid_profiles.append(bid_profile)\n",
625
+ " return pd.DataFrame(scores), pd.DataFrame(bid_profiles)"
626
+ ]
627
+ },
628
+ {
629
+ "cell_type": "markdown",
630
+ "metadata": {},
631
+ "source": [
632
+ "## Run & Results"
633
+ ]
634
+ },
635
+ {
636
+ "cell_type": "code",
637
+ "execution_count": null,
638
+ "metadata": {
639
+ "collapsed": true,
640
+ "scrolled": true
641
+ },
642
+ "outputs": [],
643
+ "source": [
644
+ "#full run\n",
645
+ "if False:\n",
646
+ " scores, bid_profiles = evaluate_slices(df,\n",
647
+ " bidders=['last_click',\n",
648
+ " 'first_click',\n",
649
+ " 'AA'],\n",
650
+ " utilities=['last_click',\n",
651
+ " 'first_click',\n",
652
+ " 'AA_normed',\n",
653
+ " 'AA_not_normed'],\n",
654
+ " test_days=range(22,29),\n",
655
+ " learning_duration=21,\n",
656
+ " hash_space = 2**18,\n",
657
+ " AA_bidder_label='all_clicks')"
658
+ ]
659
+ },
660
+ {
661
+ "cell_type": "code",
662
+ "execution_count": null,
663
+ "metadata": {
664
+ "collapsed": false,
665
+ "scrolled": true
666
+ },
667
+ "outputs": [],
668
+ "source": [
669
+ "#simple debug run\n",
670
+ "if True:\n",
671
+ " scores, bid_profiles = evaluate_slices(df,\n",
672
+ " bidders=['last_click',\n",
673
+ " 'AA'],\n",
674
+ " utilities=['last_click',\n",
675
+ " 'AA_normed'],\n",
676
+ " test_days=range(22,23),\n",
677
+ " learning_duration=5,\n",
678
+ " hash_space = 2**13,\n",
679
+ " AA_bidder_label='all_clicks')"
680
+ ]
681
+ },
682
+ {
683
+ "cell_type": "code",
684
+ "execution_count": null,
685
+ "metadata": {
686
+ "collapsed": false
687
+ },
688
+ "outputs": [],
689
+ "source": [
690
+ "scores"
691
+ ]
692
+ },
693
+ {
694
+ "cell_type": "code",
695
+ "execution_count": null,
696
+ "metadata": {
697
+ "collapsed": true
698
+ },
699
+ "outputs": [],
700
+ "source": []
701
+ }
702
+ ],
703
+ "metadata": {
704
+ "anaconda-cloud": {},
705
+ "kernelspec": {
706
+ "display_name": "Python 3",
707
+ "language": "python",
708
+ "name": "python3"
709
+ },
710
+ "language_info": {
711
+ "codemirror_mode": {
712
+ "name": "ipython",
713
+ "version": 3
714
+ },
715
+ "file_extension": ".py",
716
+ "mimetype": "text/x-python",
717
+ "name": "python",
718
+ "nbconvert_exporter": "python",
719
+ "pygments_lexer": "ipython3",
720
+ "version": "3.5.3"
721
+ }
722
+ },
723
+ "nbformat": 4,
724
+ "nbformat_minor": 1
725
+ }
criteo_attribution_dataset.tsv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94ac7a465564349bc7ba008602211d5990a3c53cc133abc0aadef61ea2391a98
3
+ size 653015824