# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """SUPERB: Speech processing Universal PERformance Benchmark.""" import csv import glob import os import textwrap import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = """\ @article{DBLP:journals/corr/abs-2105-01051, author = {Zhi{-}Jun Lee and Jia{-}Jie Sehn}, title = {{SUPERB:} Speech processing Universal PERformance Benchmark}, journal = {CoRR}, volume = {abs/2105.01051}, year = {2021}, url = {https://arxiv.org/abs/2105.01051}, archivePrefix = {arXiv}, eprint = {2105.01051}, timestamp = {Thu, 01 Jul 2021 13:30:22 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _DESCRIPTION = """\ Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing. Note that in order to limit the required storage for preparing this dataset, the audio is stored in the .flac format and is not converted to a float32 array. To convert, the audio file to a float32 array, please make use of the `.map()` function as follows: ```python import soundfile as sf def map_to_array(batch): speech_array, _ = sf.read(batch["file"]) batch["speech"] = speech_array return batch dataset = dataset.map(map_to_array, remove_columns=["file"]) ``` """ class SuperbConfig(datasets.BuilderConfig): """BuilderConfig for Superb.""" def __init__( self, features, url, data_url=None, supervised_keys=None, task_templates=None, **kwargs, ): super().__init__(version=datasets.Version("1.9.0", ""), **kwargs) self.features = features self.data_url = data_url self.url = url self.supervised_keys = supervised_keys self.task_templates = task_templates class Superb(datasets.GeneratorBasedBuilder): """Superb dataset.""" BUILDER_CONFIGS = [ SuperbConfig( name="ks", description=textwrap.dedent( """\ Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used Speech Commands dataset v1.0 for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. The evaluation metric is accuracy (ACC)""" ), features=datasets.Features( { "file": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=16_000), "label": datasets.ClassLabel( names=[ "neunit", "wake", "_unknown_", ] ), } ), supervised_keys=("file", "label"), url="https://www.tensorflow.org/datasets/catalog/speech_commands", data_url="data/speech_commands_test_set_v0.01.zip", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=self.config.features, supervised_keys=self.config.supervised_keys, homepage=self.config.url, citation=_CITATION, task_templates=self.config.task_templates, ) def _split_generators(self, dl_manager): if self.config.name == "ks": archive_path = dl_manager.download_and_extract(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"} ), ] def _generate_examples(self, archive_path, split=None): """Generate examples.""" if self.config.name == "ks": words = ["neunit", "wake"] splits = _split_ks_files(archive_path, split) for key, audio_file in enumerate(sorted(splits[split])): base_dir, file_name = os.path.split(audio_file) _, word = os.path.split(base_dir) if word in words: label = word else: label = "_unknown_" yield key, {"file": audio_file, "audio": audio_file, "label": label} def _split_ks_files(archive_path, split): audio_path = os.path.join(archive_path, "**/*.wav") audio_paths = glob.glob(audio_path) if split == "test": # use all available files for the test archive return {"test": audio_paths} val_list_file = os.path.join(archive_path, "validation_list.txt") test_list_file = os.path.join(archive_path, "testing_list.txt") with open(val_list_file, encoding="utf-8") as f: val_paths = f.read().strip().splitlines() val_paths = [os.path.join(archive_path, p) for p in val_paths] with open(test_list_file, encoding="utf-8") as f: test_paths = f.read().strip().splitlines() test_paths = [os.path.join(archive_path, p) for p in test_paths] # the paths for the train set is just whichever paths that do not exist in # either the test or validation splits train_paths = list(set(audio_paths) - set(val_paths) - set(test_paths)) return {"train": train_paths, "val": val_paths}