ggbetz commited on
Commit
89a5f5e
·
verified ·
1 Parent(s): 8ac79a5

Upload results for model microsoft/Phi-3.5-MoE-instruct (#755)

Browse files

- Upload results for model microsoft/Phi-3.5-MoE-instruct (e3fa9f5eb32d2a766797b302e3fbad880a79fb23)

data/microsoft/Phi-3.5-MoE-instruct/orig/results_24-09-20-16:26:24/microsoft__Phi-3.5-MoE-instruct/results_2024-09-20T16-31-41.733206.json ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lsat-rc_base": {
4
+ "acc,none": 0.5055762081784386,
5
+ "acc_stderr,none": 0.030540461655697047,
6
+ "alias": "lsat-rc_base"
7
+ },
8
+ "lsat-lr_base": {
9
+ "acc,none": 0.3784313725490196,
10
+ "acc_stderr,none": 0.021497067411808242,
11
+ "alias": "lsat-lr_base"
12
+ },
13
+ "lsat-ar_base": {
14
+ "acc,none": 0.2217391304347826,
15
+ "acc_stderr,none": 0.027451496604058913,
16
+ "alias": "lsat-ar_base"
17
+ },
18
+ "logiqa_base": {
19
+ "acc,none": 0.35942492012779553,
20
+ "acc_stderr,none": 0.019193275777476777,
21
+ "alias": "logiqa_base"
22
+ },
23
+ "logiqa2_base": {
24
+ "acc,none": 0.3931297709923664,
25
+ "acc_stderr,none": 0.01232332183613367,
26
+ "alias": "logiqa2_base"
27
+ }
28
+ },
29
+ "group_subtasks": {
30
+ "logiqa2_base": [],
31
+ "logiqa_base": [],
32
+ "lsat-ar_base": [],
33
+ "lsat-lr_base": [],
34
+ "lsat-rc_base": []
35
+ },
36
+ "configs": {
37
+ "logiqa2_base": {
38
+ "task": "logiqa2_base",
39
+ "group": "logikon-bench",
40
+ "dataset_path": "logikon/logikon-bench",
41
+ "dataset_name": "logiqa2",
42
+ "test_split": "test",
43
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
44
+ "doc_to_target": "{{answer}}",
45
+ "doc_to_choice": "{{options}}",
46
+ "description": "",
47
+ "target_delimiter": " ",
48
+ "fewshot_delimiter": "\n\n",
49
+ "num_fewshot": 0,
50
+ "metric_list": [
51
+ {
52
+ "metric": "acc",
53
+ "aggregation": "mean",
54
+ "higher_is_better": true
55
+ }
56
+ ],
57
+ "output_type": "multiple_choice",
58
+ "repeats": 1,
59
+ "should_decontaminate": false,
60
+ "metadata": {
61
+ "version": 0.0
62
+ }
63
+ },
64
+ "logiqa_base": {
65
+ "task": "logiqa_base",
66
+ "group": "logikon-bench",
67
+ "dataset_path": "logikon/logikon-bench",
68
+ "dataset_name": "logiqa",
69
+ "test_split": "test",
70
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
71
+ "doc_to_target": "{{answer}}",
72
+ "doc_to_choice": "{{options}}",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ }
83
+ ],
84
+ "output_type": "multiple_choice",
85
+ "repeats": 1,
86
+ "should_decontaminate": false,
87
+ "metadata": {
88
+ "version": 0.0
89
+ }
90
+ },
91
+ "lsat-ar_base": {
92
+ "task": "lsat-ar_base",
93
+ "group": "logikon-bench",
94
+ "dataset_path": "logikon/logikon-bench",
95
+ "dataset_name": "lsat-ar",
96
+ "test_split": "test",
97
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
98
+ "doc_to_target": "{{answer}}",
99
+ "doc_to_choice": "{{options}}",
100
+ "description": "",
101
+ "target_delimiter": " ",
102
+ "fewshot_delimiter": "\n\n",
103
+ "num_fewshot": 0,
104
+ "metric_list": [
105
+ {
106
+ "metric": "acc",
107
+ "aggregation": "mean",
108
+ "higher_is_better": true
109
+ }
110
+ ],
111
+ "output_type": "multiple_choice",
112
+ "repeats": 1,
113
+ "should_decontaminate": false,
114
+ "metadata": {
115
+ "version": 0.0
116
+ }
117
+ },
118
+ "lsat-lr_base": {
119
+ "task": "lsat-lr_base",
120
+ "group": "logikon-bench",
121
+ "dataset_path": "logikon/logikon-bench",
122
+ "dataset_name": "lsat-lr",
123
+ "test_split": "test",
124
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
125
+ "doc_to_target": "{{answer}}",
126
+ "doc_to_choice": "{{options}}",
127
+ "description": "",
128
+ "target_delimiter": " ",
129
+ "fewshot_delimiter": "\n\n",
130
+ "num_fewshot": 0,
131
+ "metric_list": [
132
+ {
133
+ "metric": "acc",
134
+ "aggregation": "mean",
135
+ "higher_is_better": true
136
+ }
137
+ ],
138
+ "output_type": "multiple_choice",
139
+ "repeats": 1,
140
+ "should_decontaminate": false,
141
+ "metadata": {
142
+ "version": 0.0
143
+ }
144
+ },
145
+ "lsat-rc_base": {
146
+ "task": "lsat-rc_base",
147
+ "group": "logikon-bench",
148
+ "dataset_path": "logikon/logikon-bench",
149
+ "dataset_name": "lsat-rc",
150
+ "test_split": "test",
151
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
152
+ "doc_to_target": "{{answer}}",
153
+ "doc_to_choice": "{{options}}",
154
+ "description": "",
155
+ "target_delimiter": " ",
156
+ "fewshot_delimiter": "\n\n",
157
+ "num_fewshot": 0,
158
+ "metric_list": [
159
+ {
160
+ "metric": "acc",
161
+ "aggregation": "mean",
162
+ "higher_is_better": true
163
+ }
164
+ ],
165
+ "output_type": "multiple_choice",
166
+ "repeats": 1,
167
+ "should_decontaminate": false,
168
+ "metadata": {
169
+ "version": 0.0
170
+ }
171
+ }
172
+ },
173
+ "versions": {
174
+ "logiqa2_base": 0.0,
175
+ "logiqa_base": 0.0,
176
+ "lsat-ar_base": 0.0,
177
+ "lsat-lr_base": 0.0,
178
+ "lsat-rc_base": 0.0
179
+ },
180
+ "n-shot": {
181
+ "logiqa2_base": 0,
182
+ "logiqa_base": 0,
183
+ "lsat-ar_base": 0,
184
+ "lsat-lr_base": 0,
185
+ "lsat-rc_base": 0
186
+ },
187
+ "higher_is_better": {
188
+ "logiqa2_base": {
189
+ "acc": true
190
+ },
191
+ "logiqa_base": {
192
+ "acc": true
193
+ },
194
+ "lsat-ar_base": {
195
+ "acc": true
196
+ },
197
+ "lsat-lr_base": {
198
+ "acc": true
199
+ },
200
+ "lsat-rc_base": {
201
+ "acc": true
202
+ }
203
+ },
204
+ "n-samples": {
205
+ "lsat-rc_base": {
206
+ "original": 269,
207
+ "effective": 269
208
+ },
209
+ "lsat-lr_base": {
210
+ "original": 510,
211
+ "effective": 510
212
+ },
213
+ "lsat-ar_base": {
214
+ "original": 230,
215
+ "effective": 230
216
+ },
217
+ "logiqa_base": {
218
+ "original": 626,
219
+ "effective": 626
220
+ },
221
+ "logiqa2_base": {
222
+ "original": 1572,
223
+ "effective": 1572
224
+ }
225
+ },
226
+ "config": {
227
+ "model": "vllm",
228
+ "model_args": "pretrained=microsoft/Phi-3.5-MoE-instruct,revision=main,dtype=bfloat16,tensor_parallel_size=4,gpu_memory_utilization=0.7,trust_remote_code=true,max_length=2048",
229
+ "batch_size": "auto",
230
+ "batch_sizes": [],
231
+ "device": null,
232
+ "use_cache": null,
233
+ "limit": null,
234
+ "bootstrap_iters": 100000,
235
+ "gen_kwargs": null,
236
+ "random_seed": 0,
237
+ "numpy_seed": 1234,
238
+ "torch_seed": 1234,
239
+ "fewshot_seed": 1234
240
+ },
241
+ "git_hash": "5df942c",
242
+ "date": 1726842405.7351494,
243
+ "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.2\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.4.131\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA H100\nGPU 1: NVIDIA H100\nGPU 2: NVIDIA H100\nGPU 3: NVIDIA H100\n\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 52 bits physical, 57 bits virtual\nByte Order: Little Endian\nCPU(s): 128\nOn-line CPU(s) list: 0-127\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 9354 32-Core Processor\nCPU family: 25\nModel: 17\nThread(s) per core: 2\nCore(s) per socket: 32\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3800.0000\nCPU min MHz: 400.0000\nBogoMIPS: 6500.03\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d\nVirtualization: AMD-V\nL1d cache: 2 MiB (64 instances)\nL1i cache: 2 MiB (64 instances)\nL2 cache: 64 MiB (64 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-31,64-95\nNUMA node1 CPU(s): 32-63,96-127\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; Safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] flashinfer==0.1.6+cu124torch2.4\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.24.4\n[pip3] onnx==1.16.0\n[pip3] optree==0.11.0\n[pip3] pytorch-quantization==2.1.2\n[pip3] pytorch-triton==3.0.0+989adb9a2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.4.0a0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
244
+ "transformers_version": "4.44.2",
245
+ "upper_git_hash": null,
246
+ "tokenizer_pad_token": [
247
+ "<|endoftext|>",
248
+ 32000
249
+ ],
250
+ "tokenizer_eos_token": [
251
+ "<|endoftext|>",
252
+ 32000
253
+ ],
254
+ "tokenizer_bos_token": [
255
+ "<s>",
256
+ 1
257
+ ],
258
+ "eot_token_id": 32000,
259
+ "max_length": 2048,
260
+ "task_hashes": {},
261
+ "model_source": "vllm",
262
+ "model_name": "microsoft/Phi-3.5-MoE-instruct",
263
+ "model_name_sanitized": "microsoft__Phi-3.5-MoE-instruct",
264
+ "system_instruction": null,
265
+ "system_instruction_sha": null,
266
+ "fewshot_as_multiturn": false,
267
+ "chat_template": null,
268
+ "chat_template_sha": null,
269
+ "start_time": 364187.020817218,
270
+ "end_time": 364488.065929313,
271
+ "total_evaluation_time_seconds": "301.0451120950165"
272
+ }