|
import os |
|
import numpy as np |
|
import torch |
|
from pathlib import Path |
|
|
|
def test_saved_files(content_path, num_epochs=3): |
|
"""测试保存的文件是否符合要求 |
|
|
|
Args: |
|
content_path: 训练过程的根目录 |
|
num_epochs: 要测试的epoch数量 |
|
""" |
|
|
|
required_dirs = [ |
|
'model', |
|
'dataset/representation', |
|
'dataset/prediction', |
|
'dataset/label' |
|
] |
|
|
|
for dir_path in required_dirs: |
|
full_path = os.path.join(content_path, dir_path) |
|
if not os.path.exists(full_path): |
|
print(f"错误: 目录不存在: {full_path}") |
|
return False |
|
|
|
|
|
print("\n检查模型文件...") |
|
for epoch in range(1, num_epochs + 1): |
|
model_path = os.path.join(content_path, 'model', f'{epoch}.pth') |
|
if not os.path.exists(model_path): |
|
print(f"错误: 模型文件不存在: {model_path}") |
|
return False |
|
try: |
|
|
|
state_dict = torch.load(model_path, map_location='cpu') |
|
print(f"✓ {epoch}.pth 格式正确") |
|
except Exception as e: |
|
print(f"错误: 无法加载模型文件 {model_path}: {str(e)}") |
|
return False |
|
|
|
|
|
print("\n检查特征向量文件...") |
|
prev_samples = None |
|
for epoch in range(1, num_epochs + 1): |
|
repr_path = os.path.join(content_path, 'dataset', 'representation', f'{epoch}.npy') |
|
if not os.path.exists(repr_path): |
|
print(f"错误: 特征向量文件不存在: {repr_path}") |
|
return False |
|
try: |
|
features = np.load(repr_path) |
|
samples, dim = features.shape |
|
if not (512 <= dim <= 1024): |
|
print(f"警告: 特征维度 {dim} 不在预期范围[512, 1024]内") |
|
if prev_samples is not None and samples != prev_samples: |
|
print(f"错误: epoch {epoch} 的样本数量与之前不一致") |
|
return False |
|
prev_samples = samples |
|
print(f"✓ {epoch}.npy 格式正确 [样本数: {samples}, 特征维度: {dim}]") |
|
except Exception as e: |
|
print(f"错误: 无法加载特征向量文件 {repr_path}: {str(e)}") |
|
return False |
|
|
|
|
|
print("\n检查预测结果文件...") |
|
for epoch in range(1, num_epochs + 1): |
|
pred_path = os.path.join(content_path, 'dataset', 'prediction', f'{epoch}.npy') |
|
if not os.path.exists(pred_path): |
|
print(f"错误: 预测结果文件不存在: {pred_path}") |
|
return False |
|
try: |
|
predictions = np.load(pred_path) |
|
samples, classes = predictions.shape |
|
if samples != prev_samples: |
|
print(f"错误: 预测结果的样本数量与特征向量不一致") |
|
return False |
|
if classes != 10: |
|
print(f"警告: 类别数量 {classes} 不等于10") |
|
print(f"✓ {epoch}.npy 格式正确 [样本数: {samples}, 类别数: {classes}]") |
|
except Exception as e: |
|
print(f"错误: 无法加载预测结果文件 {pred_path}: {str(e)}") |
|
return False |
|
|
|
|
|
print("\n检查标签文件...") |
|
label_path = os.path.join(content_path, 'dataset', 'label', 'labels.npy') |
|
if not os.path.exists(label_path): |
|
print(f"错误: 标签文件不存在: {label_path}") |
|
return False |
|
try: |
|
labels = np.load(label_path) |
|
if len(labels.shape) != 1: |
|
print(f"错误: 标签文件维度不正确,应为1维数组,实际为{len(labels.shape)}维") |
|
return False |
|
if labels.shape[0] != prev_samples: |
|
print(f"错误: 标签数量与样本数量不一致") |
|
return False |
|
if not np.all((labels >= 0) & (labels < 10)): |
|
print("错误: 存在超出范围的标签值") |
|
return False |
|
print(f"✓ labels.npy 格式正确 [样本数: {labels.shape[0]}]") |
|
except Exception as e: |
|
print(f"错误: 无法加载标签文件 {label_path}: {str(e)}") |
|
return False |
|
|
|
print("\n✓ 所有文件格式检查通过!") |
|
return True |
|
|
|
if __name__ == "__main__": |
|
|
|
content_path = "/home/ruofei/RRF/ttvnet/Image/AlexNet/model/0" |
|
|
|
|
|
test_saved_files(content_path, num_epochs=44) |