Datasets:
kiddothe2b
commited on
Commit
·
63943fb
1
Parent(s):
118020b
initial commit
Browse files- fairlex.py +323 -0
fairlex.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Fairlex: A multilingual benchmark for evaluating fairness in legal text processing."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import textwrap
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
MAIN_CITATION = """\
|
25 |
+
@inproceedings{chalkidis-etal-2022-fairlex,
|
26 |
+
author={Chalkidis, Ilias and Passini, Tommaso and Zhang, Sheng and
|
27 |
+
Tomada, Letizia and Schwemer, Sebastian Felix and Søgaard, Anders},
|
28 |
+
title={FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing},
|
29 |
+
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics},
|
30 |
+
year={2022},
|
31 |
+
address={Dublin, Ireland}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
Fairlex: A multilingual benchmark for evaluating fairness in legal text processing.
|
37 |
+
"""
|
38 |
+
|
39 |
+
ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"]
|
40 |
+
|
41 |
+
SCDB_ISSUE_AREAS = [
|
42 |
+
"Criminal Procedure",
|
43 |
+
"Civil Rights",
|
44 |
+
"First Amendment",
|
45 |
+
"Due Process",
|
46 |
+
"Privacy",
|
47 |
+
"Attorneys",
|
48 |
+
"Unions",
|
49 |
+
"Economic Activity",
|
50 |
+
"Judicial Power",
|
51 |
+
"Federalism",
|
52 |
+
"Federal Taxation",
|
53 |
+
]
|
54 |
+
|
55 |
+
FSCS_LABELS = ["dismissal", "approval"]
|
56 |
+
|
57 |
+
CAIL_LABELS = ["0", "<=12", "<=36", "<=60", "<=120", ">120"]
|
58 |
+
|
59 |
+
|
60 |
+
class FairlexConfig(datasets.BuilderConfig):
|
61 |
+
"""BuilderConfig for Fairlex."""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
label_column,
|
66 |
+
url,
|
67 |
+
data_url,
|
68 |
+
citation,
|
69 |
+
label_classes=None,
|
70 |
+
multi_label=None,
|
71 |
+
attributes=None,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
"""BuilderConfig for Fairlex.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
label_column: `string`, name of the column in the jsonl file corresponding
|
78 |
+
to the label
|
79 |
+
url: `string`, url for the original project
|
80 |
+
data_url: `string`, url to download the zip file from
|
81 |
+
data_file: `string`, filename for data set
|
82 |
+
citation: `string`, citation for the data set
|
83 |
+
url: `string`, url for information about the data set
|
84 |
+
label_classes: `list[string]`, the list of classes if the label is
|
85 |
+
categorical. If not provided, then the label will be of type
|
86 |
+
`datasets.Value('float32')`.
|
87 |
+
multi_label: `boolean`, True if the task is multi-label
|
88 |
+
attributes: `List<string>`, names of the protected attributes
|
89 |
+
**kwargs: keyword arguments forwarded to super.
|
90 |
+
"""
|
91 |
+
super(FairlexConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
92 |
+
self.label_column = label_column
|
93 |
+
self.label_classes = label_classes
|
94 |
+
self.multi_label = multi_label
|
95 |
+
self.attributes = attributes
|
96 |
+
self.url = url
|
97 |
+
self.data_url = data_url
|
98 |
+
self.citation = citation
|
99 |
+
|
100 |
+
|
101 |
+
class Fairlex(datasets.GeneratorBasedBuilder):
|
102 |
+
"""Fairlex: A multilingual benchmark for evaluating fairness in legal text processing. Version 1.0"""
|
103 |
+
|
104 |
+
BUILDER_CONFIGS = [
|
105 |
+
FairlexConfig(
|
106 |
+
name="ecthr",
|
107 |
+
description=textwrap.dedent(
|
108 |
+
"""\
|
109 |
+
The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights
|
110 |
+
provisions of the European Convention of Human Rights (ECHR). We use the dataset of Chalkidis et al.
|
111 |
+
(2021), which contains 11K cases from ECtHR's public database. Each case is mapped to articles of the ECHR
|
112 |
+
that were violated (if any). This is a multi-label text classification task. Given the facts of a case,
|
113 |
+
the goal is to predict the ECHR articles that were violated, if any, as decided (ruled) by the court."""
|
114 |
+
),
|
115 |
+
label_column="labels",
|
116 |
+
label_classes=ECTHR_ARTICLES,
|
117 |
+
multi_label=True,
|
118 |
+
attributes=[
|
119 |
+
("applicant_age", ["n/a", "<=35", "<=65", ">65"]),
|
120 |
+
("applicant_gender", ["n/a", "male", "female"]),
|
121 |
+
("defendant_state", ["C.E. European", "Rest of Europe"]),
|
122 |
+
],
|
123 |
+
data_url="https://zenodo.org/record/6322643/files/ecthr.zip",
|
124 |
+
url="https://huggingface.co/datasets/ecthr_cases",
|
125 |
+
citation=textwrap.dedent(
|
126 |
+
"""\
|
127 |
+
@inproceedings{chalkidis-etal-2021-paragraph,
|
128 |
+
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
|
129 |
+
author = "Chalkidis, Ilias and
|
130 |
+
Fergadiotis, Manos and
|
131 |
+
Tsarapatsanis, Dimitrios and
|
132 |
+
Aletras, Nikolaos and
|
133 |
+
Androutsopoulos, Ion and
|
134 |
+
Malakasiotis, Prodromos",
|
135 |
+
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
|
136 |
+
month = jun,
|
137 |
+
year = "2021",
|
138 |
+
address = "Online",
|
139 |
+
publisher = "Association for Computational Linguistics",
|
140 |
+
url = "https://aclanthology.org/2021.naacl-main.22",
|
141 |
+
doi = "10.18653/v1/2021.naacl-main.22",
|
142 |
+
pages = "226--241",
|
143 |
+
}
|
144 |
+
}"""
|
145 |
+
),
|
146 |
+
),
|
147 |
+
FairlexConfig(
|
148 |
+
name="scotus",
|
149 |
+
description=textwrap.dedent(
|
150 |
+
"""\
|
151 |
+
The US Supreme Court (SCOTUS) is the highest federal court in the United States of America and generally
|
152 |
+
hears only the most controversial or otherwise complex cases which have not been sufficiently well solved
|
153 |
+
by lower courts. We combine information from SCOTUS opinions with the Supreme Court DataBase (SCDB)
|
154 |
+
(Spaeth, 2020). SCDB provides metadata (e.g., date of publication, decisions, issues, decision directions
|
155 |
+
and many more) for all cases. We consider the available 14 thematic issue areas (e.g, Criminal Procedure,
|
156 |
+
Civil Rights, Economic Activity, etc.). This is a single-label multi-class document classification task.
|
157 |
+
Given the court opinion, the goal is to predict the issue area whose focus is on the subject matter
|
158 |
+
of the controversy (dispute). """
|
159 |
+
),
|
160 |
+
label_column="label",
|
161 |
+
label_classes=SCDB_ISSUE_AREAS,
|
162 |
+
multi_label=False,
|
163 |
+
attributes=[
|
164 |
+
("decision_direction", ["conservative", "liberal"]),
|
165 |
+
("respondent_type", ["other", "person", "organization", "public entity", "facility"]),
|
166 |
+
],
|
167 |
+
url="http://scdb.wustl.edu/data.php",
|
168 |
+
data_url="https://zenodo.org/record/6322643/files/scotus.zip",
|
169 |
+
citation=textwrap.dedent(
|
170 |
+
"""\
|
171 |
+
@misc{spaeth2020,
|
172 |
+
author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal
|
173 |
+
and Theodore J. Ruger and Sara C. Benesh},
|
174 |
+
year = {2020},
|
175 |
+
title ={{Supreme Court Database, Version 2020 Release 01}},
|
176 |
+
url= {http://Supremecourtdatabase.org},
|
177 |
+
howpublished={Washington University Law}
|
178 |
+
}"""
|
179 |
+
),
|
180 |
+
),
|
181 |
+
FairlexConfig(
|
182 |
+
name="fscs",
|
183 |
+
description=textwrap.dedent(
|
184 |
+
"""\
|
185 |
+
The Federal Supreme Court of Switzerland (FSCS) is the last level of appeal in Switzerland and similarly
|
186 |
+
to SCOTUS, the court generally hears only the most controversial or otherwise complex cases which have
|
187 |
+
not been sufficiently well solved by lower courts. The court often focus only on small parts of previous
|
188 |
+
decision, where they discuss possible wrong reasoning by the lower court. The Swiss-Judgment-Predict
|
189 |
+
dataset (Niklaus et al., 2021) contains more than 85K decisions from the FSCS written in one of three
|
190 |
+
languages (50K German, 31K French, 4K Italian) from the years 2000 to 2020. The dataset is not parallel,
|
191 |
+
i.e., all cases are unique and decisions are written only in a single language. The dataset provides labels
|
192 |
+
for a simplified binary (approval, dismissal) classification task. Given the facts of the case, the goal
|
193 |
+
is to predict if the plaintiff's request is valid or partially valid."""
|
194 |
+
),
|
195 |
+
label_column="label",
|
196 |
+
label_classes=FSCS_LABELS,
|
197 |
+
multi_label=False,
|
198 |
+
attributes=[
|
199 |
+
("decision_language", ["de", "fr", "it"]),
|
200 |
+
("legal_area", ["other", "public law", "penal law", "civil law", "social law", "insurance law"]),
|
201 |
+
(
|
202 |
+
"court_region",
|
203 |
+
[
|
204 |
+
"n/a",
|
205 |
+
"Région lémanique",
|
206 |
+
"Zürich",
|
207 |
+
"Espace Mittelland",
|
208 |
+
"Northwestern Switzerland",
|
209 |
+
"Eastern Switzerland",
|
210 |
+
"Central Switzerland",
|
211 |
+
"Ticino",
|
212 |
+
"Federation",
|
213 |
+
],
|
214 |
+
),
|
215 |
+
],
|
216 |
+
url="https://github.com/JoelNiklaus/SwissCourtRulingCorpus",
|
217 |
+
data_url="https://zenodo.org/record/6322643/files/fscs.zip",
|
218 |
+
citation=textwrap.dedent(
|
219 |
+
"""\
|
220 |
+
@InProceedings{niklaus-etal-2021-swiss,
|
221 |
+
author = {Niklaus, Joel
|
222 |
+
and Chalkidis, Ilias
|
223 |
+
and Stürmer, Matthias},
|
224 |
+
title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},
|
225 |
+
booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},
|
226 |
+
year = {2021},
|
227 |
+
location = {Punta Cana, Dominican Republic},
|
228 |
+
}"""
|
229 |
+
),
|
230 |
+
),
|
231 |
+
FairlexConfig(
|
232 |
+
name="cail",
|
233 |
+
description=textwrap.dedent(
|
234 |
+
"""\
|
235 |
+
The Supreme People's Court of China (CAIL) is the last level of appeal in China and considers cases that
|
236 |
+
originated from the high people's courts concerning matters of national importance. The Chinese AI and Law
|
237 |
+
challenge (CAIL) dataset (Xiao et al., 2018) is a Chinese legal NLP dataset for judgment prediction and
|
238 |
+
contains over 1m criminal cases. The dataset provides labels for relevant article of criminal code
|
239 |
+
prediction, charge (type of crime) prediction, imprisonment term (period) prediction, and monetary penalty
|
240 |
+
prediction. The updated (soft) version of the CAIL dataset has 104K criminal court cases. The tasks is
|
241 |
+
crime severity prediction task, a multi-class classification task, where given the facts of a case,
|
242 |
+
the goal is to predict how severe was the committed crime with respect to the imprisonment term.
|
243 |
+
We approximate crime severity by the length of imprisonment term, split in 6 clusters
|
244 |
+
(0, >=12, >=36, >=60, >=120, >120 months)."""
|
245 |
+
),
|
246 |
+
label_column="label",
|
247 |
+
label_classes=CAIL_LABELS,
|
248 |
+
multi_label=False,
|
249 |
+
attributes=[
|
250 |
+
("defendant_gender", ["male", "female"]),
|
251 |
+
("court_region", ["Beijing", "Liaoning", "Hunan", "Guangdong", "Sichuan", "Guangxi", "Zhejiang"]),
|
252 |
+
],
|
253 |
+
url="https://github.com/thunlp/LegalPLMs",
|
254 |
+
data_url="https://zenodo.org/record/6322643/files/cail.zip",
|
255 |
+
citation=textwrap.dedent(
|
256 |
+
"""\
|
257 |
+
@article{wang-etal-2021-equality,
|
258 |
+
title={Equality before the Law: Legal Judgment Consistency Analysis for Fairness},
|
259 |
+
author={Yuzhong Wang and Chaojun Xiao and Shirong Ma and Haoxi Zhong and Cunchao Tu and Tianyang Zhang and Zhiyuan Liu and Maosong Sun},
|
260 |
+
year={2021},
|
261 |
+
journal={Science China - Information Sciences},
|
262 |
+
url={https://arxiv.org/abs/2103.13868}
|
263 |
+
}"""
|
264 |
+
),
|
265 |
+
),
|
266 |
+
]
|
267 |
+
|
268 |
+
def _info(self):
|
269 |
+
features = {"text": datasets.Value("string")}
|
270 |
+
if self.config.multi_label:
|
271 |
+
features["labels"] = datasets.features.Sequence(datasets.ClassLabel(names=self.config.label_classes))
|
272 |
+
else:
|
273 |
+
features["label"] = datasets.ClassLabel(names=self.config.label_classes)
|
274 |
+
for attribute_name, attribute_groups in self.config.attributes:
|
275 |
+
features[attribute_name] = datasets.ClassLabel(names=attribute_groups)
|
276 |
+
return datasets.DatasetInfo(
|
277 |
+
description=self.config.description,
|
278 |
+
features=datasets.Features(features),
|
279 |
+
homepage=self.config.url,
|
280 |
+
citation=self.config.citation + "\n" + MAIN_CITATION,
|
281 |
+
)
|
282 |
+
|
283 |
+
def _split_generators(self, dl_manager):
|
284 |
+
data_dir = dl_manager.download_and_extract(self.config.data_url)
|
285 |
+
return [
|
286 |
+
datasets.SplitGenerator(
|
287 |
+
name=datasets.Split.TRAIN,
|
288 |
+
# These kwargs will be passed to _generate_examples
|
289 |
+
gen_kwargs={
|
290 |
+
"filepath": os.path.join(data_dir, "train.jsonl"),
|
291 |
+
"split": "train",
|
292 |
+
},
|
293 |
+
),
|
294 |
+
datasets.SplitGenerator(
|
295 |
+
name=datasets.Split.TEST,
|
296 |
+
# These kwargs will be passed to _generate_examples
|
297 |
+
gen_kwargs={
|
298 |
+
"filepath": os.path.join(data_dir, "test.jsonl"),
|
299 |
+
"split": "test",
|
300 |
+
},
|
301 |
+
),
|
302 |
+
datasets.SplitGenerator(
|
303 |
+
name=datasets.Split.VALIDATION,
|
304 |
+
# These kwargs will be passed to _generate_examples
|
305 |
+
gen_kwargs={
|
306 |
+
"filepath": os.path.join(data_dir, "val.jsonl"),
|
307 |
+
"split": "val",
|
308 |
+
},
|
309 |
+
),
|
310 |
+
]
|
311 |
+
|
312 |
+
def _generate_examples(self, filepath, split):
|
313 |
+
"""This function returns the examples in the raw (text) form."""
|
314 |
+
with open(filepath, encoding="utf-8") as f:
|
315 |
+
for id_, row in enumerate(f):
|
316 |
+
data = json.loads(row)
|
317 |
+
example = {
|
318 |
+
"text": data["text"],
|
319 |
+
self.config.label_column: data[self.config.label_column],
|
320 |
+
}
|
321 |
+
for attribute_name, _ in self.config.attributes:
|
322 |
+
example[attribute_name] = data["attributes"][attribute_name]
|
323 |
+
yield id_, example
|