Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K<n<10K
License:
Commit
·
0eb59bc
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +143 -0
- dataset_infos.json +1 -0
- dummy/in/1.1.0/dummy_data.zip +3 -0
- dummy/out/1.1.0/dummy_data.zip +3 -0
- polemo2.py +131 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- other
|
6 |
+
languages:
|
7 |
+
- pl
|
8 |
+
licenses:
|
9 |
+
- bsd-3-clause
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text-classification
|
18 |
+
task_ids:
|
19 |
+
- sentiment-classification
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for [Dataset Name]
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
|
47 |
+
## Dataset Description
|
48 |
+
|
49 |
+
- **Homepage:**
|
50 |
+
https://clarin-pl.eu/dspace/handle/11321/710
|
51 |
+
- **Repository:**
|
52 |
+
- **Paper:**
|
53 |
+
- **Leaderboard:**
|
54 |
+
- **Point of Contact:**
|
55 |
+
|
56 |
+
### Dataset Summary
|
57 |
+
|
58 |
+
The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.
|
59 |
+
|
60 |
+
### Supported Tasks and Leaderboards
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Languages
|
65 |
+
|
66 |
+
Polish
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
|
70 |
+
### Data Instances
|
71 |
+
|
72 |
+
[More Information Needed]
|
73 |
+
|
74 |
+
### Data Fields
|
75 |
+
|
76 |
+
- sentence: string, the review
|
77 |
+
- target: sentiment of the sentence class
|
78 |
+
|
79 |
+
The same tag system is used in plWordNet Emo for lexical units: [+m] (strong positive), [+s] (weak positive), [-m] (strong negative), [-s] (weak negative), [amb] (ambiguous) and [0] (neutral).
|
80 |
+
|
81 |
+
Note that the test set doesn't have targets so -1 is used instead
|
82 |
+
|
83 |
+
### Data Splits
|
84 |
+
|
85 |
+
[More Information Needed]
|
86 |
+
|
87 |
+
## Dataset Creation
|
88 |
+
|
89 |
+
### Curation Rationale
|
90 |
+
|
91 |
+
[More Information Needed]
|
92 |
+
|
93 |
+
### Source Data
|
94 |
+
|
95 |
+
#### Initial Data Collection and Normalization
|
96 |
+
|
97 |
+
[More Information Needed]
|
98 |
+
|
99 |
+
#### Who are the source language producers?
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
### Annotations
|
104 |
+
|
105 |
+
#### Annotation process
|
106 |
+
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
#### Who are the annotators?
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
### Personal and Sensitive Information
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
## Considerations for Using the Data
|
118 |
+
|
119 |
+
### Social Impact of Dataset
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
### Discussion of Biases
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Other Known Limitations
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
## Additional Information
|
132 |
+
|
133 |
+
### Dataset Curators
|
134 |
+
|
135 |
+
[More Information Needed]
|
136 |
+
|
137 |
+
### Licensing Information
|
138 |
+
|
139 |
+
CC BY-NC-SA 4.0
|
140 |
+
|
141 |
+
### Citation Information
|
142 |
+
|
143 |
+
[More Information Needed]
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in": {"description": "The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.\n", "citation": "@inproceedings{kocon-etal-2019-multi,\ntitle = \"Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews\",\nauthor = \"Koco{'n}, Jan and\nMi{\\l}kowski, Piotr and\nZa{'s}ko-Zieli{'n}ska, Monika\",\nbooktitle = \"Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)\",\nmonth = nov,\nyear = \"2019\",\naddress = \"Hong Kong, China\",\npublisher = \"Association for Computational Linguistics\",\nurl = \"https://www.aclweb.org/anthology/K19-1092\",\ndoi = \"10.18653/v1/K19-1092\",\npages = \"980--991\",\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/710", "license": "CC BY-NC-SA 4.0", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"num_classes": 4, "names": ["__label__meta_amb", "__label__meta_minus_m", "__label__meta_plus_m", "__label__meta_zero"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polemo2", "config_name": "in", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4810215, "num_examples": 5783, "dataset_name": "polemo2"}, "test": {"name": "test", "num_bytes": 582052, "num_examples": 722, "dataset_name": "polemo2"}, "validation": {"name": "validation", "num_bytes": 593530, "num_examples": 723, "dataset_name": "polemo2"}}, "download_checksums": {"https://klejbenchmark.com/static/data/klej_polemo2.0-in.zip": {"num_bytes": 2350339, "checksum": "ec9ccfa232686081577e6c250c79c028411076e84db60d4cd192f9a567a2cb96"}}, "download_size": 2350339, "post_processing_size": null, "dataset_size": 5985797, "size_in_bytes": 8336136}, "out": {"description": "The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.\n", "citation": "@inproceedings{kocon-etal-2019-multi,\ntitle = \"Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews\",\nauthor = \"Koco{'n}, Jan and\nMi{\\l}kowski, Piotr and\nZa{'s}ko-Zieli{'n}ska, Monika\",\nbooktitle = \"Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)\",\nmonth = nov,\nyear = \"2019\",\naddress = \"Hong Kong, China\",\npublisher = \"Association for Computational Linguistics\",\nurl = \"https://www.aclweb.org/anthology/K19-1092\",\ndoi = \"10.18653/v1/K19-1092\",\npages = \"980--991\",\n}\n", "homepage": "https://clarin-pl.eu/dspace/handle/11321/710", "license": "CC BY-NC-SA 4.0", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"num_classes": 4, "names": ["__label__meta_amb", "__label__meta_minus_m", "__label__meta_plus_m", "__label__meta_zero"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "polemo2", "config_name": "out", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4810215, "num_examples": 5783, "dataset_name": "polemo2"}, "test": {"name": "test", "num_bytes": 309790, "num_examples": 494, "dataset_name": "polemo2"}, "validation": {"name": "validation", "num_bytes": 310977, "num_examples": 494, "dataset_name": "polemo2"}}, "download_checksums": {"https://klejbenchmark.com/static/data/klej_polemo2.0-out.zip": {"num_bytes": 2139891, "checksum": "202668a59ce18cf476a7d3a8c76a802fe1eeaa869caa687313c43246988046ba"}}, "download_size": 2139891, "post_processing_size": null, "dataset_size": 5430982, "size_in_bytes": 7570873}}
|
dummy/in/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cba992c418f8da334add9e6e1bbcafbac136cc262b3fa33744364e4297ec939
|
3 |
+
size 5498
|
dummy/out/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7554922eed6e53d21cd85daa0fba76dbdf3905b3439213791916c50471161f5f
|
3 |
+
size 4647
|
polemo2.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PolEmo2.0 IN and OUT"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import csv
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{kocon-etal-2019-multi,
|
27 |
+
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
|
28 |
+
author = "Koco{\'n}, Jan and
|
29 |
+
Milkowski, Piotr and
|
30 |
+
Za{\'s}ko-Zieli{\'n}ska, Monika",
|
31 |
+
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
|
32 |
+
month = nov,
|
33 |
+
year = "2019",
|
34 |
+
address = "Hong Kong, China",
|
35 |
+
publisher = "Association for Computational Linguistics",
|
36 |
+
url = "https://www.aclweb.org/anthology/K19-1092",
|
37 |
+
doi = "10.18653/v1/K19-1092",
|
38 |
+
pages = "980--991",
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.
|
44 |
+
"""
|
45 |
+
|
46 |
+
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/710"
|
47 |
+
|
48 |
+
_LICENSE = "CC BY-NC-SA 4.0"
|
49 |
+
|
50 |
+
_URLs = {
|
51 |
+
"in": "https://klejbenchmark.com/static/data/klej_polemo2.0-in.zip",
|
52 |
+
"out": "https://klejbenchmark.com/static/data/klej_polemo2.0-out.zip",
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
class Polemo2(datasets.GeneratorBasedBuilder):
|
57 |
+
"""PolEmo2.0"""
|
58 |
+
|
59 |
+
VERSION = datasets.Version("1.1.0")
|
60 |
+
|
61 |
+
BUILDER_CONFIGS = [
|
62 |
+
datasets.BuilderConfig(
|
63 |
+
name="in",
|
64 |
+
version=VERSION,
|
65 |
+
description="The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.",
|
66 |
+
),
|
67 |
+
datasets.BuilderConfig(
|
68 |
+
name="out",
|
69 |
+
version=VERSION,
|
70 |
+
description="The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.",
|
71 |
+
),
|
72 |
+
]
|
73 |
+
|
74 |
+
DEFAULT_CONFIG_NAME = "in"
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
return datasets.DatasetInfo(
|
78 |
+
description=_DESCRIPTION,
|
79 |
+
features=datasets.Features(
|
80 |
+
{
|
81 |
+
"sentence": datasets.Value("string"),
|
82 |
+
"target": datasets.ClassLabel(
|
83 |
+
names=[
|
84 |
+
"__label__meta_amb",
|
85 |
+
"__label__meta_minus_m",
|
86 |
+
"__label__meta_plus_m",
|
87 |
+
"__label__meta_zero",
|
88 |
+
]
|
89 |
+
),
|
90 |
+
}
|
91 |
+
),
|
92 |
+
supervised_keys=None,
|
93 |
+
homepage=_HOMEPAGE,
|
94 |
+
license=_LICENSE,
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager):
|
99 |
+
"""Returns SplitGenerators."""
|
100 |
+
my_urls = _URLs[self.config.name]
|
101 |
+
data_dir = dl_manager.download_and_extract(my_urls)
|
102 |
+
return [
|
103 |
+
datasets.SplitGenerator(
|
104 |
+
name=datasets.Split.TRAIN,
|
105 |
+
gen_kwargs={
|
106 |
+
"filepath": os.path.join(data_dir, "train.tsv"),
|
107 |
+
"split": "train",
|
108 |
+
},
|
109 |
+
),
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TEST,
|
112 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"},
|
113 |
+
),
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.VALIDATION,
|
116 |
+
gen_kwargs={
|
117 |
+
"filepath": os.path.join(data_dir, "dev.tsv"),
|
118 |
+
"split": "dev",
|
119 |
+
},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath, split):
|
124 |
+
""" Yields examples. """
|
125 |
+
with open(filepath, encoding="utf-8") as f:
|
126 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
127 |
+
for id_, row in enumerate(reader):
|
128 |
+
yield id_, {
|
129 |
+
"sentence": row["sentence"],
|
130 |
+
"target": -1 if split == "test" else row["target"],
|
131 |
+
}
|