# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """PolEmo2 dataset.""" from dataclasses import dataclass from typing import List, Dict, Generator, Union, Optional, Tuple import datasets _DESCRIPTION = """PolEmo 2.0: Corpus of Multi-Domain Consumer Reviews, evaluation data for article presented at CoNLL.""" _CITATION = """ @inproceedings{kocon-etal-2019-multi, title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews", author = "Koco{\'n}, Jan and Mi{\l}kowski, Piotr and Za{\'s}ko-Zieli{\'n}ska, Monika", booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/K19-1092", doi = "10.18653/v1/K19-1092", pages = "980--991",} """ _HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/710" _LICENSE = "CC-BY-4.0" _DOMAINS = [ "all", "hotels", "medicine", "products", "reviews", ] _OUT_DOMAINS = ["Nhotels", "Nmedicine", "Nproducts", "Nreviews"] _CONFIGS_TEXT = ["text", "sentence"] _LABELS = ["zero", "minus", "plus", "amb"] URL_PATH = ( "https://huggingface.co/datasets/clarin-pl/polemo2-official/resolve/main/data" ) _URLS = { cfg: { **{ domain: { split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt" for split_type in ["train", "dev", "test"] } for domain in _DOMAINS }, **{ domain: { split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt" for split_type in ["train", "dev"] } for domain in _OUT_DOMAINS }, } for cfg in _CONFIGS_TEXT } @dataclass class PolEmo2Config(datasets.BuilderConfig): text_cfg: Optional[str] = None domain: Optional[str] = None train_domains: Optional[List[str]] = None dev_domains: Optional[List[str]] = None test_domains: Optional[List[str]] = None class PolEmo2(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = PolEmo2Config BUILDER_CONFIGS = [ *[ PolEmo2Config( name=f"{domain}_{text_type}", domain=domain, text_cfg=text_type, train_domains=[domain], dev_domains=[domain], test_domains=[domain], ) for domain in _DOMAINS for text_type in _CONFIGS_TEXT ] ] DEFAULT_CONFIG_NAME = "all_text" def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "target": datasets.features.ClassLabel( names=_LABELS, num_classes=len(_LABELS) ), } ), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE ) def _get_files_by_domains(self, domains: List[str], split: str) -> List[str]: return [_URLS[self.config.text_cfg][domain][split] for domain in domains] def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: files = { "train": dl_manager.download_and_extract( self._get_files_by_domains( domains=self.config.train_domains, split="train" ) ), "dev": dl_manager.download_and_extract( self._get_files_by_domains(domains=self.config.dev_domains, split="dev") ), "test": dl_manager.download_and_extract( self._get_files_by_domains( domains=self.config.test_domains, split="test" ) ), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": files["dev"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": files["test"]}, ), ] def _generate_examples( self, filepath: Union[str, List[str]] ) -> Generator[Tuple[int, Dict[str, str]], None, None]: gid = 0 for path in filepath: with open(path, "r", encoding="utf-8") as f: for line in f: splitted_line = line.split(" ") yield gid, { "text": " ".join(splitted_line[:-1]), "target": ( splitted_line[-1] .strip() .replace("minus_m", "minus") .replace("plus_m", "plus") .split("_")[-1] ), } gid += 1