ckg commited on
Commit
f4464fa
·
verified ·
1 Parent(s): 3ef4f34

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -2
README.md CHANGED
@@ -7,13 +7,25 @@ dataset_info:
7
  dtype: string
8
  splits:
9
  - name: train
10
- num_bytes: 39858266.0
11
  num_examples: 140000
12
  download_size: 37136812
13
- dataset_size: 39858266.0
14
  configs:
15
  - config_name: default
16
  data_files:
17
  - split: train
18
  path: data/train-*
 
 
 
19
  ---
 
 
 
 
 
 
 
 
 
 
7
  dtype: string
8
  splits:
9
  - name: train
10
+ num_bytes: 39858266
11
  num_examples: 140000
12
  download_size: 37136812
13
+ dataset_size: 39858266
14
  configs:
15
  - config_name: default
16
  data_files:
17
  - split: train
18
  path: data/train-*
19
+ license: cc
20
+ size_categories:
21
+ - 100K<n<1M
22
  ---
23
+
24
+
25
+ # MNIST for Diffusion
26
+ Training a diffusion model from scratch is pretty cool, why not do so with the canonical "hello world" dataset of computer vision? This dataset matches the sample dataset from [this text_to_image.py diffusion tutorial](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image). Specifying `ckg/mnist-for-diffusion` ought get you off to the races.
27
+ This dataset contains two copies of the original MNIST train & test sets. The first half of the dataset contains MNIST images with the string-ified class id (i.e: "1") and the second half has the class id mapped to a natural language name (i.e: "one"). This little data augmentation doubles the number of samples and should result in interesting behavior if you train a U-Net from scratch whilst using a frozen, pre-trained text-encoder!
28
+
29
+
30
+
31
+ Thank you LeCun & Cortes for making this dataset available.