bc2gm_test / bc2gm.py
chintagunta85's picture
Update bc2gm.py
fade8fe
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{smith2008overview,
title={Overview of BioCreative II gene mention recognition},
author={Smith, Larry and Tanabe, Lorraine K and nee Ando, Rie Johnson and Kuo, Cheng-Ju and Chung, I-Fang and Hsu, Chun-Nan and Lin, Yu-Shi and Klinger, Roman and Friedrich, Christoph M and Ganchev, Kuzman and others},
journal={Genome biology},
volume={9},
number={S2},
pages={S2},
year={2008},
publisher={Springer}
}"""
_DESCRIPTION = """\
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop.
In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions.
A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721.
Here we present brief descriptions of all the methods used and a statistical analysis of the results.
We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible,
and furthermore that the best result makes use of the lowest scoring submissions.
For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/
The original dataset can be downloaded from: https://biocreative.bioinformatics.udel.edu/resources/corpora/biocreative-ii-corpus/
This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll
"""
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/"
_URL = "https://github.com/spyysalo/bc2gm-corpus/raw/master/conll/"
_TRAINING_FILE = "train.tsv"
_DEV_FILE = "devel.tsv"
_TEST_FILE = "test.tsv"
class Bc2gmCorpusConfig(datasets.BuilderConfig):
"""BuilderConfig for Bc2gmCorpus"""
def __init__(self, **kwargs):
"""BuilderConfig for Bc2gmCorpus.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Bc2gmCorpusConfig, self).__init__(**kwargs)
class Bc2gmCorpus(datasets.GeneratorBasedBuilder):
"""Bc2gmCorpus dataset."""
BUILDER_CONFIGS = [
Bc2gmCorpusConfig(name="bc2gm_corpus", version=datasets.Version("1.0.0"), description="bc2gm corpus"),
]
def _info(self):
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE',
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE',
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES']
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=custom_names
)
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
shift = 0
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# tokens are tab separated
splits = line.split("\t")
tokens.append(splits[0])
ner_tags.append(str(int(splits[1].rstrip()+shift)))
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}