|
import os |
|
import random |
|
import hashlib |
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_NAMES = { |
|
"all": ["m_bel", "f_bel", "m_folk", "f_folk"], |
|
"gender": ["female", "male"], |
|
"singing_method": ["Folk_Singing", "Bel_Canto"], |
|
} |
|
|
|
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" |
|
|
|
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data" |
|
|
|
_URLS = { |
|
"audio": f"{_DOMAIN}/audio.zip", |
|
"mel": f"{_DOMAIN}/mel.zip", |
|
"eval": f"{_DOMAIN}/eval.zip", |
|
} |
|
|
|
|
|
class bel_canto(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=( |
|
datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=22050), |
|
"mel": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES["all"]), |
|
"gender": datasets.features.ClassLabel(names=_NAMES["gender"]), |
|
"singing_method": datasets.features.ClassLabel( |
|
names=_NAMES["singing_method"] |
|
), |
|
} |
|
) |
|
if self.config.name == "default" |
|
else ( |
|
datasets.Features( |
|
{ |
|
"mel": datasets.Image(), |
|
"cqt": datasets.Image(), |
|
"chroma": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES["all"]), |
|
"gender": datasets.features.ClassLabel( |
|
names=_NAMES["gender"] |
|
), |
|
"singing_method": datasets.features.ClassLabel( |
|
names=_NAMES["singing_method"] |
|
), |
|
} |
|
) |
|
) |
|
), |
|
supervised_keys=("mel", "label"), |
|
homepage=_HOMEPAGE, |
|
license="CC-BY-NC-ND", |
|
version="1.2.0", |
|
task_templates=[ |
|
ImageClassification( |
|
task="image-classification", |
|
image_column="mel", |
|
label_column="label", |
|
) |
|
], |
|
) |
|
|
|
def _str2md5(self, original_string: str): |
|
md5_obj = hashlib.md5() |
|
md5_obj.update(original_string.encode("utf-8")) |
|
return md5_obj.hexdigest() |
|
|
|
def _split_generators(self, dl_manager): |
|
dataset = [] |
|
if self.config.name == "default": |
|
files = {} |
|
audio_files = dl_manager.download_and_extract(_URLS["audio"]) |
|
mel_files = dl_manager.download_and_extract(_URLS["mel"]) |
|
for fpath in dl_manager.iter_files([audio_files]): |
|
fname: str = os.path.basename(fpath) |
|
if fname.endswith(".wav"): |
|
cls = os.path.basename(os.path.dirname(fpath)) + "/" |
|
item_id = self._str2md5(cls + fname.split(".wa")[0]) |
|
files[item_id] = {"audio": fpath} |
|
|
|
for fpath in dl_manager.iter_files([mel_files]): |
|
fname = os.path.basename(fpath) |
|
if fname.endswith(".jpg"): |
|
cls = os.path.basename(os.path.dirname(fpath)) + "/" |
|
item_id = self._str2md5(cls + fname.split(".jp")[0]) |
|
files[item_id]["mel"] = fpath |
|
|
|
dataset = list(files.values()) |
|
|
|
else: |
|
data_files = dl_manager.download_and_extract(_URLS["eval"]) |
|
for fpath in dl_manager.iter_files([data_files]): |
|
fname = os.path.basename(fpath) |
|
if "mel" in fpath and fname.endswith(".jpg"): |
|
dataset.append(fpath) |
|
|
|
categories = {} |
|
for name in _NAMES["all"]: |
|
categories[name] = [] |
|
|
|
for data in dataset: |
|
fpath = data["audio"] if self.config.name == "default" else data |
|
label = os.path.basename(os.path.dirname(fpath)) |
|
categories[label].append(data) |
|
|
|
testset, validset, trainset = [], [], [] |
|
for cls in categories: |
|
random.shuffle(categories[cls]) |
|
count = len(categories[cls]) |
|
p80 = int(count * 0.8) |
|
p90 = int(count * 0.9) |
|
trainset += categories[cls][:p80] |
|
validset += categories[cls][p80:p90] |
|
testset += categories[cls][p90:] |
|
|
|
random.shuffle(trainset) |
|
random.shuffle(validset) |
|
random.shuffle(testset) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"files": trainset} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"files": validset} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"files": testset} |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
if self.config.name == "default": |
|
for i, item in enumerate(files): |
|
label: str = os.path.basename(os.path.dirname(item["audio"])) |
|
yield i, { |
|
"audio": item["audio"], |
|
"mel": item["mel"], |
|
"label": label, |
|
"gender": ("male" if label.split("_")[0] == "m" else "female"), |
|
"singing_method": ( |
|
"Bel_Canto" if label.split("_")[1] == "bel" else "Folk_Singing" |
|
), |
|
} |
|
|
|
else: |
|
for i, fpath in enumerate(files): |
|
label = os.path.basename(os.path.dirname(fpath)) |
|
yield i, { |
|
"mel": fpath, |
|
"cqt": fpath.replace("mel", "cqt"), |
|
"chroma": fpath.replace("mel", "chroma"), |
|
"label": label, |
|
"gender": ("male" if label.split("_")[0] == "m" else "female"), |
|
"singing_method": ( |
|
"Bel_Canto" if label.split("_")[1] == "bel" else "Folk_Singing" |
|
), |
|
} |
|
|