File size: 4,512 Bytes
3f5de1d
 
4fef89f
 
3f5de1d
 
 
 
 
 
 
 
2d574f4
 
 
 
 
 
 
 
 
 
 
 
 
3f5de1d
 
 
 
 
 
 
 
 
 
 
 
4ba08cc
a966ae1
 
 
 
 
 
 
 
 
 
3f5de1d
 
 
 
 
 
 
 
a966ae1
ce43a94
3f5de1d
 
 
 
 
 
 
 
 
 
 
 
 
 
a966ae1
3f5de1d
 
 
 
a966ae1
 
 
 
3f5de1d
 
a966ae1
 
 
3f5de1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba08cc
a966ae1
 
 
3f5de1d
a966ae1
23882cc
a966ae1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import datasets

from typing import List

_DESCRIPTION = """\
Dataset for the shared baby language modeling task.
The goal is to train a language model from scratch on this data which represents
roughly the amount of text and speech data a young child observes.  
"""

_HOMEPAGE = "https://babylm.github.io"

filenames = [
    "aochildes.txt", 
    "bnc_spoken.txt",
    "cbt.txt",
    "children_stories.txt",
    "gutenberg.txt",
    "open_subtitles.txt",
    "qed.txt", 
    "simple_wikipedia.txt",
    "switchboard.txt",
    "wikipedia.txt"
]

class BabyLM(datasets.GeneratorBasedBuilder):
    
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="strict_small",
            description="Small version of the dataset with 10M words",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict",
            description="Full version of the dataset with 100M words",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict_small_gold",
            description="Small version of the dataset with 10M words and gold POS tags",
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="strict_gold",
            description="Full version of the dataset with 100M words and gold POS tags",
            version="1.0.0",
        )
    ]

    DEFAULT_CONFIG_NAME = "strict_small"

    def _info(self):
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "tagged_text": datasets.Value("string"),
                    "filename": datasets.Value("string"),
                }
            )
            return datasets.DatasetInfo(
                # This is the description that will appear on the datasets page.
                description=_DESCRIPTION,
                features=features,  # Here we define them above because they are different between the two configurations
                homepage=_HOMEPAGE,
            )


    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """ 
        Returns data for different splits 
        """

        if self.config.name == "strict_small":
            train_data_dir = "10M"
        else: 
            train_data_dir = "100M"
        if 'gold' in self.config.name:
            folder = 'tagged_gold'
        else:
            folder = 'tagged'

        urls_to_download = {
            "train": [f"{folder}/{train_data_dir}/{fn}" for fn in filenames],
            "dev": [f"{folder}/dev/{fn}" for fn in filenames],
            "test": [f"{folder}/test/{fn}" for fn in filenames]
        } 

        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                    "filepaths": downloaded_files["train"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "split": "dev",
                    "filepaths": downloaded_files["dev"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                    "filepaths": downloaded_files["test"]
                }
            ),
        ]

     # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, split, filepaths):
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        # the filepaths should be a list of filepaths 
        if isinstance(filepaths, str):
            filepaths = [filepaths]
        
        global_idx = 0 

        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                filename = str(filepath.split("/")[-1])
                is_tags = False
                text = ""
                # Every other row contains POS tags
                for row in f:
                    if is_tags:
                        yield global_idx, {"text": text, "tagged_text": row, "filename": filepath}
                        global_idx += 1 
                        is_tags = False
                    else:
                        text = row
                        is_tags = True