File size: 4,512 Bytes
3f5de1d 4fef89f 3f5de1d 2d574f4 3f5de1d 4ba08cc a966ae1 3f5de1d a966ae1 ce43a94 3f5de1d a966ae1 3f5de1d a966ae1 3f5de1d a966ae1 3f5de1d 4ba08cc a966ae1 3f5de1d a966ae1 23882cc a966ae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import datasets
from typing import List
_DESCRIPTION = """\
Dataset for the shared baby language modeling task.
The goal is to train a language model from scratch on this data which represents
roughly the amount of text and speech data a young child observes.
"""
_HOMEPAGE = "https://babylm.github.io"
filenames = [
"aochildes.txt",
"bnc_spoken.txt",
"cbt.txt",
"children_stories.txt",
"gutenberg.txt",
"open_subtitles.txt",
"qed.txt",
"simple_wikipedia.txt",
"switchboard.txt",
"wikipedia.txt"
]
class BabyLM(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="strict_small",
description="Small version of the dataset with 10M words",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict",
description="Full version of the dataset with 100M words",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_small_gold",
description="Small version of the dataset with 10M words and gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_gold",
description="Full version of the dataset with 100M words and gold POS tags",
version="1.0.0",
)
]
DEFAULT_CONFIG_NAME = "strict_small"
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"tagged_text": datasets.Value("string"),
"filename": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns data for different splits
"""
if self.config.name == "strict_small":
train_data_dir = "10M"
else:
train_data_dir = "100M"
if 'gold' in self.config.name:
folder = 'tagged_gold'
else:
folder = 'tagged'
urls_to_download = {
"train": [f"{folder}/{train_data_dir}/{fn}" for fn in filenames],
"dev": [f"{folder}/dev/{fn}" for fn in filenames],
"test": [f"{folder}/test/{fn}" for fn in filenames]
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"filepaths": downloaded_files["train"]}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split": "dev",
"filepaths": downloaded_files["dev"]}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test",
"filepaths": downloaded_files["test"]
}
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split, filepaths):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# the filepaths should be a list of filepaths
if isinstance(filepaths, str):
filepaths = [filepaths]
global_idx = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
filename = str(filepath.split("/")[-1])
is_tags = False
text = ""
# Every other row contains POS tags
for row in f:
if is_tags:
yield global_idx, {"text": text, "tagged_text": row, "filename": filepath}
global_idx += 1
is_tags = False
else:
text = row
is_tags = True
|