{"commit":"a79e9939c6512db4827fc831f2689871d99cfc26","old_file":"Base\/Change\/Context.agda","new_file":"Base\/Change\/Context.agda","old_contents":"module Base.Change.Context\n {Type : Set}\n (ΔType : Type → Type) where\n\n-- Transform a context of values into a context of values and\n-- changes.\n\nopen import Base.Syntax.Context Type\n\nΔContext : Context → Context\nΔContext ∅ = ∅\nΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ\n\n-- like ΔContext, but ΔType τ and τ are swapped\nΔContext′ : Context → Context\nΔContext′ ∅ = ∅\nΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ\n\nΓ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ\nΓ≼ΔΓ {∅} = ∅\nΓ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ\n","new_contents":"module Base.Change.Context\n {Type : Set}\n (ΔType : Type → Type) where\n\nopen import Base.Syntax.Context Type\n\n-- Transform a context of values into a context of values and\n-- changes.\n\nΔContext : Context → Context\nΔContext ∅ = ∅\nΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ\n\n-- like ΔContext, but ΔType τ and τ are swapped\nΔContext′ : Context → Context\nΔContext′ ∅ = ∅\nΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ\n\nΓ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ\nΓ≼ΔΓ {∅} = ∅\nΓ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ\n","subject":"Move function-specific comment right before function","message":"Move function-specific comment right before function\n\nCurrently, this seems a comment about the whole module.\n\nOld-commit-hash: c25e918e712496981adfe4c74f94a8d80e8e5052\n","lang":"Agda","license":"mit","repos":"inc-lc\/ilc-agda"} {"commit":"2971c097d16d13188929ef857808539310db0b8e","old_file":"meaning.agda","new_file":"meaning.agda","old_contents":"module meaning where\n\nopen import Level\n\nrecord Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where\n constructor\n meaning\n field\n {Semantics} : Set ℓ\n ⟦_⟧ : Syntax → Semantics\n\nopen Meaning {{...}} public\n\n","new_contents":"module meaning where\n\nopen import Level\n\nrecord Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where\n constructor\n meaning\n field\n {Semantics} : Set ℓ\n ⟨_⟩⟦_⟧ : Syntax → Semantics\n\nopen Meaning {{...}} public\n renaming (⟨_⟩⟦_⟧ to ⟦_⟧)\n\nopen Meaning public\n using (⟨_⟩⟦_⟧)\n","subject":"Improve printing of resolved overloading.","message":"Improve printing of resolved overloading.\n\nAfter this change, the semantic brackets will contain the syntactic\nthing even if Agda displays explicitly resolved overloaded notation.\n\nOld-commit-hash: c8cbc43ed8e715342e0cc3bccc98e0be2dd23560\n","lang":"Agda","license":"mit","repos":"inc-lc\/ilc-agda"} {"commit":"bfcd2eb5d4fab7bcb698719c3f02fc2aea768cf3","old_file":"lib\/Data\/Tree\/Binary.agda","new_file":"lib\/Data\/Tree\/Binary.agda","old_contents":"{-# OPTIONS --without-K #-}\nopen import Type hiding (★)\n\nmodule Data.Tree.Binary where\n\ndata BinTree {a} (A : ★ a) : ★ a where\n empty : BinTree A\n leaf : A → BinTree A\n fork : (ℓ r : BinTree A) → BinTree A\n","new_contents":"{-# OPTIONS --without-K #-}\nopen import Type hiding (★)\n\nopen import Level\nopen import Data.Zero\nopen import Data.Sum\n\nmodule Data.Tree.Binary where\n\ndata BinTree {a} (A : ★ a) : ★ a where\n empty : BinTree A\n leaf : A → BinTree A\n fork : (ℓ r : BinTree A) → BinTree A\n\nAny : ∀ {a p}{A : ★ a}(P : A → ★ p) → BinTree A → ★ p\nAny P empty = Lift 𝟘\nAny P (leaf x) = P x\nAny P (fork ts ts₁) = Any P ts ⊎ Any P ts₁\n","subject":"Add Any predicate for binary tree","message":"Add Any predicate for binary tree\n","lang":"Agda","license":"bsd-3-clause","repos":"crypto-agda\/agda-nplib"} {"commit":"4995bc2a3bd988bcf90ed2efe5b614e17b5554a0","old_file":"Game\/IND-CPA-alt.agda","new_file":"Game\/IND-CPA-alt.agda","old_contents":"","new_contents":"\n{-# OPTIONS --without-K #-}\nopen import Type\nopen import Data.Product\nopen import Data.Bit\n\nmodule Game.IND-CPA-alt\n (PubKey : ★)\n (SecKey : ★)\n (Message : ★)\n (CipherText : ★)\n\n -- randomness supply for: encryption, key-generation, adversary, extensions\n (Rₑ Rₖ Rₐ : ★)\n\n (KeyGen : Rₖ → PubKey × SecKey)\n (Enc : PubKey → Message → Rₑ → CipherText)\n\nwhere\n\nM² = Bit → Message\n\n-- IND-CPA adversary in two parts\nAdv : ★\nAdv = Rₐ → PubKey → (M² × (CipherText → Bit))\n\n-- IND-CPA randomness supply\nR : ★\nR = (Rₐ × Rₖ × Rₑ)\n\n-- IND-CPA games:\n-- * input: adversary and randomness supply\n-- * output b: adversary claims we are in game ⅁ b\nGame : ★\nGame = Adv → R → Bit\n\n-- The game step by step:\n-- (pk) key-generation, only the public-key is needed\n-- (mb) send randomness, public-key and bit\n-- receive which message to encrypt\n-- (c) encrypt the message\n-- (b′) send randomness, public-key and ciphertext\n-- receive the guess from the adversary\n⅁ : Bit → Game\n⅁ b m (rₐ , rₖ , rₑ) = b′\n where\n pk = proj₁ (KeyGen rₖ)\n ad = m rₐ pk\n mb = proj₁ ad b\n c = Enc pk mb rₑ\n b′ = proj₂ ad c\n\n⅁₀ ⅁₁ : Game\n⅁₀ = ⅁ 0b\n⅁₁ = ⅁ 1b\n","subject":"Add alternative defintion for IND CPA","message":"Add alternative defintion for IND CPA\n","lang":"Agda","license":"bsd-3-clause","repos":"crypto-agda\/crypto-agda"} {"commit":"a48ff25823603032db6b1a26e4605512aefd0561","old_file":"notes\/FOT\/FOTC\/Data\/Conat\/ConatSL.agda","new_file":"notes\/FOT\/FOTC\/Data\/Conat\/ConatSL.agda","old_contents":"","new_contents":"------------------------------------------------------------------------------\n-- Definition of FOTC Conat using Agda's co-inductive combinators\n------------------------------------------------------------------------------\n\n{-# OPTIONS --allow-unsolved-metas #-}\n{-# OPTIONS --no-universe-polymorphism #-}\n{-# OPTIONS --without-K #-}\n\nmodule FOT.FOTC.Data.Conat.ConatSL where\n\nopen import FOTC.Base\nopen import Coinduction\n\n------------------------------------------------------------------------------\n\ndata Conat : D → Set where\n cozero : Conat zero\n cosucc : ∀ {n} → (∞ (Conat n)) → Conat (succ₁ n)\n\nConat-unf : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] Conat n' ∧ n ≡ succ₁ n')\nConat-unf cozero = inj₁ refl\nConat-unf (cosucc {n} Cn) = inj₂ (n , ♭ Cn , refl)\n\nConat-pre-fixed : ∀ {n} →\n (n ≡ zero ∨ (∃[ n' ] Conat n' ∧ n ≡ succ₁ n')) →\n Conat n\nConat-pre-fixed (inj₁ h) = subst Conat (sym h) cozero\nConat-pre-fixed (inj₂ (n , Cn , h)) = subst Conat (sym h) (cosucc (♯ Cn))\n\nConat-coind : ∀ (A : D → Set) {n} →\n (A n → n ≡ zero ∨ (∃[ n' ] A n' ∧ n ≡ succ₁ n')) →\n A n → Conat n\nConat-coind A h An = {!!}\n","subject":"Add incomplete note on co-inductive natural numbers.","message":"Add incomplete note on co-inductive natural numbers.\n","lang":"Agda","license":"mit","repos":"asr\/fotc,asr\/fotc"} {"commit":"a79e9939c6512db4827fc831f2689871d99cfc26","old_file":"Base\/Change\/Context.agda","new_file":"Base\/Change\/Context.agda","old_contents":"module Base.Change.Context\n {Type : Set}\n (ΔType : Type → Type) where\n\n-- Transform a context of values into a context of values and\n-- changes.\n\nopen import Base.Syntax.Context Type\n\nΔContext : Context → Context\nΔContext ∅ = ∅\nΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ\n\n-- like ΔContext, but ΔType τ and τ are swapped\nΔContext′ : Context → Context\nΔContext′ ∅ = ∅\nΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ\n\nΓ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ\nΓ≼ΔΓ {∅} = ∅\nΓ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ\n","new_contents":"module Base.Change.Context\n {Type : Set}\n (ΔType : Type → Type) where\n\nopen import Base.Syntax.Context Type\n\n-- Transform a context of values into a context of values and\n-- changes.\n\nΔContext : Context → Context\nΔContext ∅ = ∅\nΔContext (τ • Γ) = ΔType τ • τ • ΔContext Γ\n\n-- like ΔContext, but ΔType τ and τ are swapped\nΔContext′ : Context → Context\nΔContext′ ∅ = ∅\nΔContext′ (τ • Γ) = τ • ΔType τ • ΔContext′ Γ\n\nΓ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔContext Γ\nΓ≼ΔΓ {∅} = ∅\nΓ≼ΔΓ {τ • Γ} = drop ΔType τ • keep τ • Γ≼ΔΓ\n","subject":"Move function-specific comment right before function","message":"Move function-specific comment right before function\n\nCurrently, this seems a comment about the whole module.\n\nOld-commit-hash: c25e918e712496981adfe4c74f94a8d80e8e5052\n","lang":"Agda","license":"mit","repos":"inc-lc\/ilc-agda"} {"commit":"2971c097d16d13188929ef857808539310db0b8e","old_file":"meaning.agda","new_file":"meaning.agda","old_contents":"module meaning where\n\nopen import Level\n\nrecord Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where\n constructor\n meaning\n field\n {Semantics} : Set ℓ\n ⟦_⟧ : Syntax → Semantics\n\nopen Meaning {{...}} public\n\n","new_contents":"module meaning where\n\nopen import Level\n\nrecord Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where\n constructor\n meaning\n field\n {Semantics} : Set ℓ\n ⟨_⟩⟦_⟧ : Syntax → Semantics\n\nopen Meaning {{...}} public\n renaming (⟨_⟩⟦_⟧ to ⟦_⟧)\n\nopen Meaning public\n using (⟨_⟩⟦_⟧)\n","subject":"Improve printing of resolved overloading.","message":"Improve printing of resolved overloading.\n\nAfter this change, the semantic brackets will contain the syntactic\nthing even if Agda displays explicitly resolved overloaded notation.\n\nOld-commit-hash: c8cbc43ed8e715342e0cc3bccc98e0be2dd23560\n","lang":"Agda","license":"mit","repos":"inc-lc\/ilc-agda"} {"commit":"bfcd2eb5d4fab7bcb698719c3f02fc2aea768cf3","old_file":"lib\/Data\/Tree\/Binary.agda","new_file":"lib\/Data\/Tree\/Binary.agda","old_contents":"{-# OPTIONS --without-K #-}\nopen import Type hiding (★)\n\nmodule Data.Tree.Binary where\n\ndata BinTree {a} (A : ★ a) : ★ a where\n empty : BinTree A\n leaf : A → BinTree A\n fork : (ℓ r : BinTree A) → BinTree A\n","new_contents":"{-# OPTIONS --without-K #-}\nopen import Type hiding (★)\n\nopen import Level\nopen import Data.Zero\nopen import Data.Sum\n\nmodule Data.Tree.Binary where\n\ndata BinTree {a} (A : ★ a) : ★ a where\n empty : BinTree A\n leaf : A → BinTree A\n fork : (ℓ r : BinTree A) → BinTree A\n\nAny : ∀ {a p}{A : ★ a}(P : A → ★ p) → BinTree A → ★ p\nAny P empty = Lift 𝟘\nAny P (leaf x) = P x\nAny P (fork ts ts₁) = Any P ts ⊎ Any P ts₁\n","subject":"Add Any predicate for binary tree","message":"Add Any predicate for binary tree\n","lang":"Agda","license":"bsd-3-clause","repos":"crypto-agda\/agda-nplib"} {"commit":"4995bc2a3bd988bcf90ed2efe5b614e17b5554a0","old_file":"Game\/IND-CPA-alt.agda","new_file":"Game\/IND-CPA-alt.agda","old_contents":"","new_contents":"\n{-# OPTIONS --without-K #-}\nopen import Type\nopen import Data.Product\nopen import Data.Bit\n\nmodule Game.IND-CPA-alt\n (PubKey : ★)\n (SecKey : ★)\n (Message : ★)\n (CipherText : ★)\n\n -- randomness supply for: encryption, key-generation, adversary, extensions\n (Rₑ Rₖ Rₐ : ★)\n\n (KeyGen : Rₖ → PubKey × SecKey)\n (Enc : PubKey → Message → Rₑ → CipherText)\n\nwhere\n\nM² = Bit → Message\n\n-- IND-CPA adversary in two parts\nAdv : ★\nAdv = Rₐ → PubKey → (M² × (CipherText → Bit))\n\n-- IND-CPA randomness supply\nR : ★\nR = (Rₐ × Rₖ × Rₑ)\n\n-- IND-CPA games:\n-- * input: adversary and randomness supply\n-- * output b: adversary claims we are in game ⅁ b\nGame : ★\nGame = Adv → R → Bit\n\n-- The game step by step:\n-- (pk) key-generation, only the public-key is needed\n-- (mb) send randomness, public-key and bit\n-- receive which message to encrypt\n-- (c) encrypt the message\n-- (b′) send randomness, public-key and ciphertext\n-- receive the guess from the adversary\n⅁ : Bit → Game\n⅁ b m (rₐ , rₖ , rₑ) = b′\n where\n pk = proj₁ (KeyGen rₖ)\n ad = m rₐ pk\n mb = proj₁ ad b\n c = Enc pk mb rₑ\n b′ = proj₂ ad c\n\n⅁₀ ⅁₁ : Game\n⅁₀ = ⅁ 0b\n⅁₁ = ⅁ 1b\n","subject":"Add alternative defintion for IND CPA","message":"Add alternative defintion for IND CPA\n","lang":"Agda","license":"bsd-3-clause","repos":"crypto-agda\/crypto-agda"} {"commit":"a48ff25823603032db6b1a26e4605512aefd0561","old_file":"notes\/FOT\/FOTC\/Data\/Conat\/ConatSL.agda","new_file":"notes\/FOT\/FOTC\/Data\/Conat\/ConatSL.agda","old_contents":"","new_contents":"------------------------------------------------------------------------------\n-- Definition of FOTC Conat using Agda's co-inductive combinators\n------------------------------------------------------------------------------\n\n{-# OPTIONS --allow-unsolved-metas #-}\n{-# OPTIONS --no-universe-polymorphism #-}\n{-# OPTIONS --without-K #-}\n\nmodule FOT.FOTC.Data.Conat.ConatSL where\n\nopen import FOTC.Base\nopen import Coinduction\n\n------------------------------------------------------------------------------\n\ndata Conat : D → Set where\n cozero : Conat zero\n cosucc : ∀ {n} → (∞ (Conat n)) → Conat (succ₁ n)\n\nConat-unf : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] Conat n' ∧ n ≡ succ₁ n')\nConat-unf cozero = inj₁ refl\nConat-unf (cosucc {n} Cn) = inj₂ (n , ♭ Cn , refl)\n\nConat-pre-fixed : ∀ {n} →\n (n ≡ zero ∨ (∃[ n' ] Conat n' ∧ n ≡ succ₁ n')) →\n Conat n\nConat-pre-fixed (inj₁ h) = subst Conat (sym h) cozero\nConat-pre-fixed (inj₂ (n , Cn , h)) = subst Conat (sym h) (cosucc (♯ Cn))\n\nConat-coind : ∀ (A : D → Set) {n} →\n (A n → n ≡ zero ∨ (∃[ n' ] A n' ∧ n ≡ succ₁ n')) →\n A n → Conat n\nConat-coind A h An = {!!}\n","subject":"Add incomplete note on co-inductive natural numbers.","message":"Add incomplete note on co-inductive natural numbers.\n","lang":"Agda","license":"mit","repos":"asr\/fotc,asr\/fotc"}