|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
MLEE is an event extraction corpus consisting of manually annotated abstracts of papers |
|
on angiogenesis. It contains annotations for entities, relations, events and coreferences |
|
The annotations span molecular, cellular, tissue, and organ-level processes. |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
_SOURCE_VIEW_NAME = "source" |
|
_UNIFIED_VIEW_NAME = "bigbio" |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{pyysalo2012event, |
|
title={Event extraction across multiple levels of biological organization}, |
|
author={Pyysalo, Sampo and Ohta, Tomoko and Miwa, Makoto and Cho, Han-Cheol and Tsujii, Jun'ichi and Ananiadou, Sophia}, |
|
journal={Bioinformatics}, |
|
volume={28}, |
|
number={18}, |
|
pages={i575--i581}, |
|
year={2012}, |
|
publisher={Oxford University Press} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MLEE is an event extraction corpus consisting of manually annotated abstracts of papers |
|
on angiogenesis. It contains annotations for entities, relations, events and coreferences |
|
The annotations span molecular, cellular, tissue, and organ-level processes. |
|
""" |
|
|
|
_DATASETNAME = "mlee" |
|
_DISPLAYNAME = "MLEE" |
|
|
|
_HOMEPAGE = "http://www.nactem.ac.uk/MLEE/" |
|
|
|
_LICENSE = 'Creative Commons Attribution Non Commercial Share Alike 3.0 Unported' |
|
_URLs = { |
|
"source": "http://www.nactem.ac.uk/MLEE/MLEE-1.0.2-rev1.tar.gz", |
|
"bigbio_kb": "http://www.nactem.ac.uk/MLEE/MLEE-1.0.2-rev1.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.EVENT_EXTRACTION, |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.RELATION_EXTRACTION, |
|
Tasks.COREFERENCE_RESOLUTION, |
|
] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MLEE(datasets.GeneratorBasedBuilder): |
|
"""Write a short docstring documenting what this dataset is""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="mlee_source", |
|
version=SOURCE_VERSION, |
|
description="MLEE source schema", |
|
schema="source", |
|
subset_id="mlee", |
|
), |
|
BigBioConfig( |
|
name="mlee_bigbio_kb", |
|
version=SOURCE_VERSION, |
|
description="MLEE BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="mlee", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "mlee_source" |
|
|
|
_ROLE_MAPPING = { |
|
"Theme2": "Theme", |
|
"Instrument2": "Instrument", |
|
"Participant2": "Participant", |
|
"Participant3": "Participant", |
|
"Participant4": "Participant", |
|
} |
|
|
|
def _info(self): |
|
""" |
|
Provide information about MLEE: |
|
- `features` defines the schema of the parsed data set. The schema depends on the |
|
chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the |
|
original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the |
|
canonical KB-task schema defined in `biomedical/schemas/kb.py`. |
|
|
|
""" |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"trigger": datasets.Value( |
|
"string" |
|
), |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value( |
|
"string" |
|
), |
|
"cuid": datasets.Value( |
|
"string" |
|
), |
|
"text": datasets.Value( |
|
"string" |
|
), |
|
} |
|
], |
|
}, |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=features, |
|
|
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=str(_LICENSE), |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
""" |
|
Create the three splits provided by MLEE: train, validation and test. |
|
|
|
Each split is created by instantiating a `datasets.SplitGenerator`, which will |
|
call `this._generate_examples` with the keyword arguments in `gen_kwargs`. |
|
""" |
|
|
|
my_urls = _URLs[self.config.schema] |
|
data_dir = Path(dl_manager.download_and_extract(my_urls)) |
|
data_files = { |
|
"train": data_dir |
|
/ "MLEE-1.0.2-rev1" |
|
/ "standoff" |
|
/ "development" |
|
/ "train", |
|
"dev": data_dir / "MLEE-1.0.2-rev1" / "standoff" / "development" / "test", |
|
"test": data_dir / "MLEE-1.0.2-rev1" / "standoff" / "test" / "test", |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_files": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data_files": data_files["dev"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_files": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _standardize_arguments_roles(self, kb_example: Dict) -> Dict: |
|
|
|
for event in kb_example["events"]: |
|
for argument in event["arguments"]: |
|
role = argument["role"] |
|
argument["role"] = self._ROLE_MAPPING.get(role, role) |
|
|
|
return kb_example |
|
|
|
def _generate_examples(self, data_files: Path): |
|
""" |
|
Yield one `(guid, example)` pair per abstract in MLEE. |
|
The contents of `example` will depend on the chosen configuration. |
|
""" |
|
if self.config.schema == "source": |
|
txt_files = list(data_files.glob("*txt")) |
|
for guid, txt_file in enumerate(txt_files): |
|
example = parse_brat_file(txt_file) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
elif self.config.schema == "bigbio_kb": |
|
txt_files = list(data_files.glob("*txt")) |
|
for guid, txt_file in enumerate(txt_files): |
|
example = brat_parse_to_bigbio_kb( |
|
parse_brat_file(txt_file) |
|
) |
|
example = self._standardize_arguments_roles(example) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|