|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{Shardlow2018, |
|
title = { |
|
A New Corpus to Support Text Mining for the Curation of Metabolites in the |
|
{ChEBI} Database |
|
}, |
|
author = { |
|
Shardlow, M J and Nguyen, N and Owen, G and O'Donovan, C and Leach, A and |
|
McNaught, J and Turner, S and Ananiadou, S |
|
}, |
|
year = 2018, |
|
month = may, |
|
booktitle = { |
|
Proceedings of the Eleventh International Conference on Language Resources |
|
and Evaluation ({LREC} 2018) |
|
}, |
|
location = {Miyazaki, Japan}, |
|
pages = {280--285}, |
|
conference = { |
|
Eleventh International Conference on Language Resources and Evaluation |
|
(LREC 2018) |
|
}, |
|
language = {en} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "chebi_nactem" |
|
_DISPLAYNAME = "CHEBI Corpus" |
|
|
|
_DESCRIPTION = """\ |
|
The ChEBI corpus contains 199 annotated abstracts and 100 annotated full papers. |
|
All documents in the corpus have been annotated for named entities and relations |
|
between these. In total, our corpus provides over 15000 named entity annotations |
|
and over 6,000 relations between entities. |
|
""" |
|
|
|
_HOMEPAGE = "http://www.nactem.ac.uk/chebi" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = { |
|
_DATASETNAME: "http://www.nactem.ac.uk/chebi/ChEBI.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class ChebiNactemDatasset(datasets.GeneratorBasedBuilder): |
|
"""Chemical Entities of Biological Interest (ChEBI) corpus.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset_id in ["abstr_ann1", "abstr_ann2", "fullpaper"]: |
|
BUILDER_CONFIGS += [ |
|
BigBioConfig( |
|
name=f"chebi_nactem_{subset_id}_source", |
|
version=SOURCE_VERSION, |
|
description="chebi_nactem source schema", |
|
schema="source", |
|
subset_id=f"chebi_nactem_{subset_id}", |
|
), |
|
BigBioConfig( |
|
name=f"chebi_nactem_{subset_id}_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="chebi_nactem BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id=f"chebi_nactem_{subset_id}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "chebi_nactem_fullpaper_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1": datasets.Value("string"), |
|
"arg2": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
else: |
|
raise NotImplementedError(self.config.schema) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
subset_paths = { |
|
"chebi_nactem_abstr_ann1": "ChEBI/abstracts/Annotator1", |
|
"chebi_nactem_abstr_ann2": "ChEBI/abstracts/Annotator2", |
|
"chebi_nactem_fullpaper": "ChEBI/fullpapers", |
|
} |
|
|
|
subset_dir = Path(data_dir) / subset_paths[self.config.subset_id] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"data_dir": subset_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
def uid_gen(): |
|
_uid = 0 |
|
while True: |
|
yield str(_uid) |
|
_uid += 1 |
|
|
|
uid = iter(uid_gen()) |
|
|
|
txt_files = (f for f in os.listdir(data_dir) if f.endswith(".txt")) |
|
for idx, file_name in enumerate(txt_files): |
|
|
|
brat_file = data_dir / file_name |
|
contents = parse_brat_file(brat_file) |
|
|
|
if self.config.schema == "source": |
|
yield idx, { |
|
"document_id": contents["document_id"], |
|
"text": contents["text"], |
|
"entities": contents["text_bound_annotations"], |
|
"relations": [ |
|
{ |
|
"id": relation["id"], |
|
"type": relation["type"], |
|
"arg1": relation["head"]["ref_id"], |
|
"arg2": relation["tail"]["ref_id"], |
|
} |
|
for relation in contents["relations"] |
|
], |
|
} |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
yield idx, { |
|
"id": next(uid), |
|
"document_id": contents["document_id"], |
|
"passages": [ |
|
{ |
|
"id": next(uid), |
|
"type": "", |
|
"text": [contents["text"]], |
|
"offsets": [(0, len(contents["text"]))], |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": f"{idx}_{entity['id']}", |
|
"type": entity["type"], |
|
"offsets": entity["offsets"], |
|
"text": entity["text"], |
|
"normalized": [], |
|
} |
|
for entity in contents["text_bound_annotations"] |
|
], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [ |
|
{ |
|
"id": f"{idx}_{relation['id']}", |
|
"type": relation["type"], |
|
"arg1_id": f"{idx}_{relation['head']['ref_id']}", |
|
"arg2_id": f"{idx}_{relation['tail']['ref_id']}", |
|
"normalized": [], |
|
} |
|
for relation in contents["relations"] |
|
], |
|
} |
|
else: |
|
raise NotImplementedError(self.config.schema) |
|
|