File size: 11,547 Bytes
aa99455
 
 
 
 
25b3832
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee51e9a
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9655258
 
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce60e7
99745f2
aa99455
 
 
3ce60e7
 
 
 
 
 
 
 
aa99455
 
0187a27
aa99455
 
 
0187a27
aa99455
 
 
0187a27
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
 
0187a27
aa99455
 
 
0187a27
 
 
 
0a9f2f6
aa99455
1b37f5c
aa99455
 
 
 
861da93
aa99455
 
 
 
 
 
 
861da93
aa99455
 
0187a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acb6be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa99455
 
0187a27
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
81e2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
0187a27
aa99455
 
 
 
 
0187a27
aa99455
 
 
9655258
0187a27
9655258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa99455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- ceb
- co
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- haw
- hi
- hmn
- ht
- hu
- hy
- id
- ig
- is
- it
- iw
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- lv
- mg
- mi
- mk
- ml
- mn
- mr
- ms
- mt
- my
- ne
- nl
- 'no'
- ny
- pa
- pl
- ps
- pt
- ro
- ru
- sd
- si
- sk
- sl
- sm
- sn
- so
- sq
- sr
- st
- su
- sv
- sw
- ta
- te
- tg
- th
- tr
- uk
- und
- ur
- uz
- vi
- xh
- yi
- yo
- zh
- zu
license:
- odc-by
multilinguality:
- multilingual
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
- 1M<n<10M
- 10M<n<100M
- 100M<n<1B
- 1B<n<10B
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
paperswithcode_id: mc4
pretty_name: mC4-sampling
language_bcp47:
- bg-Latn
- el-Latn
- hi-Latn
- ja-Latn
- ru-Latn
- zh-Latn
---

# Dataset Card for mC4-sampling

## Table of Contents

- [Dataset Card for mC4-sampling](#dataset-card-for-mc4-sampling)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Dataset Sampling](#dataset-sampling)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://huggingface.co/bertin-project/bertin-roberta-base-spanish

### Dataset Summary

This dataset builds upon the AllenAI version of the original [mC4](https://huggingface.co/datasets/allenai/c4) and adds sampling methods to perform perplexity-based filtering on the fly. Please, refer to [BERTIN Project](https://huggingface.co/bertin-project/bertin-roberta-base-spanish).

The original dataset is mC4, the multilingual colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org".

108 languages are available and are reported in the [`mc4` dataset](https://huggingface.co/datasets/allenai/c4#dataset-summary).

You can load the mC4 subset of any language like this (with default *random* sampling):

```python
from datasets import load_dataset

en_mc4 = load_dataset("bertin-project/mc4-sampling", "en")
```

And if you can even specify a list of languages:

```python
from datasets import load_dataset

mc4_subset_with_five_languages = load_dataset("bertin-project/mc4-sampling", languages=["en", "fr", "es", "de", "zh"])
```

### Dataset Sampling

There are 3 main different ways of getting sampled versions of mc4 using this dataset.

#### Random

Arguably, the simplest of methods. It keeps a document based on a probability threshold we called `factor`. It defaults to `0.5` for random sampling:

```python
def _should_keep_doc_random(self, doc, factor=None, **kwargs):
    factor = 0.5 if factor is None else factor
    return self.rng.uniform() <= factor
```

The way to use this sampling method is by adding an extra parameter to the instantiation of the dataset:

```python
from datasets import load_dataset

mc4random = load_dataset(
    "bertin-project/mc4-sampling", "es",
    split="train",
    streaming=True,
    sampling_method="random",
    factor=0.5,
)
for sample in mc4random:
    print(sample)
    break
```

#### Gaussian

This sampling method tries to adjust to the underlying distribution while oversampling the central quartiles of the perplexity distribution of the documents in mC4 for a given language. Two parameters control the shape of the approximation, `factor` (peakness of the exponential function) and `width` (spread). Default values are selected for Spanish.

```python
def _should_keep_doc_gaussian(self, doc, factor=None, width=None, boundaries=None, **kwargs):
    perplexity = self.get_perplexity(doc)
    width = (9 / 2) if width is None else width
    factor = 0.78 if factor is None else factor
    median = 662247.50212365 if boundaries is None else boundaries[1]
    exponential = np.exp((-1 / width) * ((perplexity - median) / median) ** 2)
    weighted_perplexity = factor * exponential
    return self.rng.uniform() < weighted_perplexity
```

In order to use this sampling methods, information about the quartile boundaries of the underlying distribution need to be calculated beforehand and passed in to the instantiation of the dataset. Moreover, the path to a [KenLM model](https://github.com/kpu/kenlm/) (5-gram language model) or an object with a method `.score(text:str) -> float` need to also be passed in for the calculation of the perplexity value of a document. KenLM can be installed with pip:

```bash
pip install https://github.com/kpu/kenlm/archive/master.zip
```

```python
from datasets import load_dataset

mc4gaussian = load_dataset(
    "bertin-project/mc4-sampling",
    "es",
    split="train",
    streaming=True,
    sampling_method="gaussian",
    perplexity_model="./es.arpa.bin",
    boundaries=[536394.99320948, 662247.50212365, 919250.87225178],
    factor=0.78,
    width=9/2,
)
for sample in mc4gaussian:
    print(sample)
    break
```

Facebook has created and released 5-gram Kneser-Ney models for 100 languages available to download and use within the KenLM library. To download your own Kneser-Ney language model, chose a language code from the next list:

```bash
af,ar,az,be,bg,bn,ca,cs,da,de,el,en,es,et,fa,fi,fr,gu,he,hi,hr,hu,hy,id,is,it,ja,ka,kk,km,kn,ko,lt,lv,mk,ml,mn,mr,my,ne,nl,no,pl,pt,ro,ru,uk,zh
```

And run the next download command replacing `lang` with your own language code:

```bash
wget http://dl.fbaipublicfiles.com/cc_net/lm/lang.arpa.bin
```

### Stepwise

The stepwise sampling method uses a simple criteria by oversampling from the central quartiles inversely proportionally their range. Only `boundaries`, `factor` (strength of the oversampling), and `perplexity_model` are needed:

```python
def _should_keep_doc_step(self, doc, factor=None, boundaries=None, **kwargs):
    perplexity = self.get_perplexity(doc)
    factor = 1.5e5 if factor is None else factor
    if boundaries is None:
        boundaries = [536394.99320948, 662247.50212365, 919250.87225178]
    if perplexity <= boundaries[0]:
        quartile_range = boundaries[0]
    elif boundaries[0] < perplexity < boundaries[1]:
        quartile_range = boundaries[1] - boundaries[0]
    elif boundaries[1] < perplexity < boundaries[2]:
        quartile_range = boundaries[2] - boundaries[1]
    elif perplexity >= boundaries[2]:
        quartile_range = 10 * boundaries[2]
    probability = factor / quartile_range
    return self.rng.uniform() < probability
```

In order to use this sampling method, a similar invocation is needed:

```python
mc4stepwsie = load_dataset(
    "bertin-project/mc4-sampling",
    "es",
    split="train",
    streaming=True,
    sampling_method="stepwise",
    perplexity_model="./es.arpa.bin",
    boundaries=[536394.99320948, 662247.50212365, 919250.87225178],
    factor=1.5e5,
)
for sample in mc4stepwsie:
    print(sample)
    break
```

### Supported Tasks and Leaderboards

mC4-sampling is mainly intended to pretrain language models and word representations on a budget.

### Languages

The dataset supports 108 languages.

## Dataset Structure

### Data Instances

An example form the `en` config is:

```
{'timestamp': '2018-06-24T01:32:39Z',
 'text': 'Farm Resources in Plumas County\
Show Beginning Farmer Organizations & Professionals (304)\
There are 304 resources serving Plumas County in the following categories:\
Map of Beginning Farmer Organizations & Professionals serving Plumas County\
Victoria Fisher - Office Manager - Loyalton, CA\
Amy Lynn Rasband - UCCE Plumas-Sierra Administrative Assistant II - Quincy , CA\
Show Farm Income Opportunities Organizations & Professionals (353)\
There are 353 resources serving Plumas County in the following categories:\
Farm Ranch And Forest Retailers (18)\
Map of Farm Income Opportunities Organizations & Professionals serving Plumas County\
Warner Valley Wildlife Area - Plumas County\
Show Farm Resources Organizations & Professionals (297)\
There are 297 resources serving Plumas County in the following categories:\
Map of Farm Resources Organizations & Professionals serving Plumas County\
There are 57 resources serving Plumas County in the following categories:\
Map of Organic Certification Organizations & Professionals serving Plumas County',
 'url': 'http://www.californialandcan.org/Plumas/Farm-Resources/'}
```

### Data Fields

The data have several fields:

- `url`: url of the source as a string
- `text`: text content as a string
- `timestamp`: timestamp as a string

### Data Splits

The same splits as in [mC4 are available](https://huggingface.co/datasets/mc4#data-splits).

## Additional Information

### Licensing Information

BERTIN Project is releasing this dataset under the same terms AllenAI released mC4, that is, those of the ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset.

### Citation Information

To cite this dataset:
```bibtex
@article{BERTIN,
	author = {Javier De la Rosa y Eduardo G. Ponferrada y Manu Romero y Paulo Villegas y Pablo González de Prado Salas y María Grandury},
	title = {{BERTIN}: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling},
	journal = {Procesamiento del Lenguaje Natural},
	volume = {68},
	number = {0},
	year = {2022},
	keywords = {},
	abstract = {The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pretraining sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name perplexity sampling that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget.},
	issn = {1989-7553},
	url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403},
	pages = {13--23}
}
```

If you use this dataset, we would love to hear about it! Reach out on twitter, GitHub, Discord, or shoot us an email.

To cite the original `mc4` dataset:
```
@article{2019t5,
    author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
    title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
    journal = {arXiv e-prints},
    year = {2019},
    archivePrefix = {arXiv},
    eprint = {1910.10683},
}
```

### Contributions

Dataset contributed by [@versae](https://github.com/versae).

Thanks to [@dirkgr](https://github.com/dirkgr) and [@lhoestq](https://github.com/lhoestq) for adding the original mC4 dataset.