Datasets:
File size: 15,254 Bytes
aa99455 97222ed aa99455 8c50e78 aa99455 8c50e78 aa99455 8c50e78 aa99455 8c50e78 aa99455 28c2a71 97222ed 28c2a71 aa99455 8c50e78 aa99455 3d69f5d aa99455 3d69f5d aa99455 0187a27 aa99455 b885ac4 3d69f5d aa99455 b885ac4 aa99455 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
"""Perplexity Sampled mC4 dataset based on Common Crawl."""
import gzip
import json
import datasets
try:
import kenlm # pip install https://github.com/kpu/kenlm/archive/master.zip
except ImportError:
import warnings
KENLM_IMPORT = (
"To be able to use bertin-project/mc4-sampling, you need to install the following dependency: kenlm.\n"
"Please install it using 'pip install https://github.com/kpu/kenlm/archive/master.zip' for instance."
)
kenlm = None
warnings.warn(KENLM_IMPORT)
import numpy as np
from numpy.random import default_rng
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
A sampling-enabled version of mC4, the colossal, cleaned version of Common Crawl's web crawl corpus.
Based on Common Crawl dataset: "https://commoncrawl.org".
This is a version of the processed version of Google's mC4 dataset by AllenAI, in which sampling methods are implemented to perform on the fly.
"""
_CITATION = """
@article{2019t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {arXiv e-prints},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.10683},
}
"""
_URL = "https://github.com/allenai/allennlp/discussions/5056"
_DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/multilingual/c4-{language}{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"
_LANGUAGES = [
"af",
"am",
"ar",
"az",
"be",
"bg",
"bg-Latn",
"bn",
"ca",
"ceb",
"co",
"cs",
"cy",
"da",
"de",
"el",
"el-Latn",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"fi",
"fil",
"fr",
"fy",
"ga",
"gd",
"gl",
"gu",
"ha",
"haw",
"hi",
"hi-Latn",
"hmn",
"ht",
"hu",
"hy",
"id",
"ig",
"is",
"it",
"iw",
"ja",
"ja-Latn",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"ku",
"ky",
"la",
"lb",
"lo",
"lt",
"lv",
"mg",
"mi",
"mk",
"ml",
"mn",
"mr",
"ms",
"mt",
"my",
"ne",
"nl",
"no",
"ny",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"ru-Latn",
"sd",
"si",
"sk",
"sl",
"sm",
"sn",
"so",
"sq",
"sr",
"st",
"su",
"sv",
"sw",
"ta",
"te",
"tg",
"th",
"tr",
"uk",
"und",
"ur",
"uz",
"vi",
"xh",
"yi",
"yo",
"zh",
"zh-Latn",
"zu",
]
_N_SHARDS_PER_SPLIT = {
"af": {"train": 64, "validation": 1},
"am": {"train": 16, "validation": 1},
"ar": {"train": 1024, "validation": 4},
"az": {"train": 256, "validation": 1},
"be": {"train": 128, "validation": 1},
"bg": {"train": 1024, "validation": 1},
"bg-Latn": {"train": 4, "validation": 1},
"bn": {"train": 512, "validation": 1},
"ca": {"train": 512, "validation": 1},
"ceb": {"train": 8, "validation": 1},
"co": {"train": 8, "validation": 1},
"cs": {"train": 1024, "validation": 2},
"cy": {"train": 256, "validation": 1},
"da": {"train": 1024, "validation": 1},
"de": {"train": 2048, "validation": 16},
"el": {"train": 1024, "validation": 2},
"el-Latn": {"train": 16, "validation": 1},
"en": {"train": 11264, "validation": 128},
"eo": {"train": 32, "validation": 1},
"es": {"train": 2048, "validation": 16},
"et": {"train": 256, "validation": 1},
"eu": {"train": 64, "validation": 1},
"fa": {"train": 1024, "validation": 2},
"fi": {"train": 1024, "validation": 1},
"fil": {"train": 64, "validation": 1},
"fr": {"train": 2048, "validation": 16},
"fy": {"train": 16, "validation": 1},
"ga": {"train": 16, "validation": 1},
"gd": {"train": 16, "validation": 1},
"gl": {"train": 128, "validation": 1},
"gu": {"train": 64, "validation": 1},
"ha": {"train": 8, "validation": 1},
"haw": {"train": 2, "validation": 1},
"hi": {"train": 1024, "validation": 2},
"hi-Latn": {"train": 16, "validation": 1},
"hmn": {"train": 8, "validation": 1},
"ht": {"train": 8, "validation": 1},
"hu": {"train": 1024, "validation": 2},
"hy": {"train": 128, "validation": 1},
"id": {"train": 1024, "validation": 4},
"ig": {"train": 4, "validation": 1},
"is": {"train": 128, "validation": 1},
"it": {"train": 1024, "validation": 8},
"iw": {"train": 1024, "validation": 1},
"ja": {"train": 1024, "validation": 8},
"ja-Latn": {"train": 8, "validation": 1},
"jv": {"train": 8, "validation": 1},
"ka": {"train": 256, "validation": 1},
"kk": {"train": 256, "validation": 1},
"km": {"train": 64, "validation": 1},
"kn": {"train": 64, "validation": 1},
"ko": {"train": 1024, "validation": 1},
"ku": {"train": 16, "validation": 1},
"ky": {"train": 64, "validation": 1},
"la": {"train": 64, "validation": 1},
"lb": {"train": 32, "validation": 1},
"lo": {"train": 8, "validation": 1},
"lt": {"train": 512, "validation": 1},
"lv": {"train": 256, "validation": 1},
"mg": {"train": 8, "validation": 1},
"mi": {"train": 4, "validation": 1},
"mk": {"train": 128, "validation": 1},
"ml": {"train": 128, "validation": 1},
"mn": {"train": 128, "validation": 1},
"mr": {"train": 1024, "validation": 1},
"ms": {"train": 512, "validation": 1},
"mt": {"train": 128, "validation": 1},
"my": {"train": 64, "validation": 1},
"ne": {"train": 256, "validation": 1},
"nl": {"train": 1024, "validation": 4},
"no": {"train": 1024, "validation": 1},
"ny": {"train": 4, "validation": 1},
"pa": {"train": 32, "validation": 1},
"pl": {"train": 1024, "validation": 4},
"ps": {"train": 16, "validation": 1},
"pt": {"train": 1024, "validation": 4},
"ro": {"train": 1024, "validation": 2},
"ru": {"train": 4096, "validation": 32},
"ru-Latn": {"train": 32, "validation": 1},
"sd": {"train": 64, "validation": 1},
"si": {"train": 64, "validation": 1},
"sk": {"train": 512, "validation": 1},
"sl": {"train": 256, "validation": 1},
"sm": {"train": 4, "validation": 1},
"sn": {"train": 8, "validation": 1},
"so": {"train": 64, "validation": 1},
"sq": {"train": 128, "validation": 1},
"sr": {"train": 256, "validation": 1},
"st": {"train": 2, "validation": 1},
"su": {"train": 4, "validation": 1},
"sv": {"train": 1024, "validation": 2},
"sw": {"train": 32, "validation": 1},
"ta": {"train": 256, "validation": 1},
"te": {"train": 128, "validation": 1},
"tg": {"train": 64, "validation": 1},
"th": {"train": 1024, "validation": 1},
"tr": {"train": 1024, "validation": 4},
"uk": {"train": 1024, "validation": 2},
"und": {"train": 3072, "validation": 32},
"ur": {"train": 128, "validation": 1},
"uz": {"train": 32, "validation": 1},
"vi": {"train": 1024, "validation": 4},
"xh": {"train": 2, "validation": 1},
"yi": {"train": 16, "validation": 1},
"yo": {"train": 2, "validation": 1},
"zh": {"train": 1024, "validation": 2},
"zh-Latn": {"train": 8, "validation": 1},
"zu": {"train": 8, "validation": 1},
}
class Mc4SamplingConfig(datasets.BuilderConfig):
"""BuilderConfig for mC4 Sampling."""
def __init__(self, languages, *args, **kwargs):
"""BuilderConfig for mC4 Sampling.
Args:
languages (:obj:`List[str]`): list of languages to load
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name="+".join(languages),
**kwargs,
)
self.languages = languages
class Mc4Sampling(datasets.GeneratorBasedBuilder):
"""mC4 Sampling, a colossal, cleaned version of Common Crawl's web crawl corpus."""
BUILDER_CONFIGS = [Mc4SamplingConfig(languages=[lang]) for lang in _LANGUAGES]
BUILDER_CONFIG_CLASS = Mc4SamplingConfig
def __init__(self, *args, **kwargs):
self.data_files = kwargs.get("data_files", {})
self.sampling_method = kwargs.pop("sampling_method", None)
self.perplexity_model = kwargs.pop("perplexity_model", None)
self.sampling_factor = kwargs.pop("sampling_factor", None)
self.boundaries = kwargs.pop("boundaries", None)
self.seed = kwargs.pop("seed", None)
self.kwargs = kwargs
if self.sampling_method:
if self.seed is not None:
self.rng = default_rng(self.seed)
else:
self.rng = default_rng()
if self.sampling_method == "random":
self.should_keep_doc = self._should_keep_doc_random
else:
# Loading 5-gram model
# http://dl.fbaipublicfiles.com/cc_net/lm/es.arpa.bin
logger.info("loading model = %s", str(self.perplexity_model))
if isinstance(self.perplexity_model, str):
if not kenlm:
raise ImportError(KENLM_IMPORT)
self.pp_model = kenlm.Model(self.perplexity_model)
else:
self.pp_model = self.perplexity_model
if self.sampling_method == "gaussian":
self.should_keep_doc = self._should_keep_doc_gaussian
else:
self.should_keep_doc = self._should_keep_doc_step
# init_kwargs = {
# prop: kwargs.get(prop)
# for prop in ("name", "version", "data_dir", "data_files", "description")
# }
super().__init__(*args, **kwargs)
def get_perplexity(self, doc):
doc_log_score, doc_length = 0, 0
for line in doc.split("\n"):
log_score = self.pp_model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
return 10.0 ** (-doc_log_score / doc_length)
def _should_keep_doc_step(self, doc, factor=None, boundaries=None, **kwargs):
perplexity = self.get_perplexity(doc)
factor = 1.5e5 if factor is None else factor
if boundaries is None:
boundaries = [536394.99320948, 662247.50212365, 919250.87225178]
if perplexity <= boundaries[0]:
quartile_range = boundaries[0]
elif boundaries[0] < perplexity < boundaries[1]:
quartile_range = boundaries[1] - boundaries[0]
elif boundaries[1] < perplexity < boundaries[2]:
quartile_range = boundaries[2] - boundaries[1]
elif perplexity >= boundaries[2]:
quartile_range = 10 * boundaries[2]
probability = factor / quartile_range
return self.rng.uniform() < probability
def _should_keep_doc_gaussian(self, doc, factor=None, width=None, boundaries=None, **kwargs):
perplexity = self.get_perplexity(doc)
width = (9 / 2) if width is None else width # width (spread) of the exponential curve
factor = 0.78 if factor is None else factor
if boundaries is not None:
m = boundaries[1]
else:
m = 662247.50212365
exponential = np.exp((-1 / width) * ((perplexity - m) / m) ** 2)
weighted_perplexity = factor * exponential
return self.rng.uniform() < weighted_perplexity
def _should_keep_doc_random(self, doc, factor=None, **kwargs):
factor = 0.5 if factor is None else factor
return self.rng.uniform() <= factor
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"timestamp": datasets.Value("string"),
"url": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_urls = {}
for split in ["train", "validation"]:
data_urls[split] = [
_DATA_URL.format(
language=self.config.name,
split_suffix="-validation" if split == "validation" else "",
index=index,
n_shards=_N_SHARDS_PER_SPLIT[lang][split],
)
for lang in self.config.languages
for index in range(_N_SHARDS_PER_SPLIT[lang][split])
]
if self.data_files and "train" in self.data_files:
train_downloaded_files = self.data_files["train"]
if not isinstance(train_downloaded_files, (tuple, list)):
train_downloaded_files = [train_downloaded_files]
else:
train_downloaded_files = dl_manager.download(data_urls["train"])
if self.data_files and "validation" in self.data_files:
validation_downloaded_files = self.data_files["validation"]
if not isinstance(validation_downloaded_files, (tuple, list)):
validation_downloaded_files = [validation_downloaded_files]
else:
validation_downloaded_files = dl_manager.download(data_urls["validation"])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
),
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
if filepath.endswith("jsonl") or filepath.endswith("json"):
with open(filepath, "r", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1
else:
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
if self.sampling_method:
logger.info("sampling method = %s", self.sampling_method)
for line in f:
if line:
example = json.loads(line)
if self.should_keep_doc(
example["text"],
**self.kwargs):
yield id_, example
id_ += 1
else:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1
|