SaifPunjwani commited on
Commit
b598440
β€’
1 Parent(s): ace09be

Changed README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -226
README.md CHANGED
@@ -1,227 +1,9 @@
1
- # Allo-AVA: A Large-Scale Multimodal Dataset for Allocentric Avatar Animation
2
-
3
- ## Overview
4
-
5
- Allo-AVA (Allocentric Audio-Visual Avatar) is a large-scale multimodal dataset designed for research and development in avatar animation. It focuses on generating natural and contextually appropriate gestures from text and audio inputs in an allocentric (third-person) perspective. The dataset addresses the scarcity of high-quality, synchronized multimodal data capturing the intricate synchronization between speech, facial expressions, and body movements, essential for creating lifelike avatar animations in virtual environments.
6
-
7
  ---
8
-
9
- ## Dataset Statistics
10
-
11
- - **Total Videos:** 7,500
12
- - **Total Duration:** 1,250 hours
13
- - **Average Video Length:** 10 minutes
14
- - **Unique Speakers:** ~3,500
15
- - **Total Word Count:** 15 million
16
- - **Average Words per Minute:** 208
17
- - **Total Keypoints:** ~135 billion
18
- - **Dataset Size:** 2.46 TB
19
-
20
- ---
21
-
22
- ## Content Distribution
23
-
24
- - **TED Talks:** 40%
25
- - **Interviews:** 30%
26
- - **Panel Discussions:** 20%
27
- - **Formal Presentations:** 10%
28
-
29
- ---
30
-
31
- ## Directory Structure
32
-
33
- ```
34
- Allo-AVA/
35
- β”œβ”€β”€ video/
36
- β”œβ”€β”€ audio/
37
- β”œβ”€β”€ transcript/
38
- β”œβ”€β”€ keypoints/
39
- └── keypoints_video/
40
- ```
41
-
42
- - **`video/`**: Original MP4 video files.
43
- - **`audio/`**: Extracted WAV audio files.
44
- - **`transcript/`**: JSON files with word-level transcriptions and timestamps.
45
- - **`keypoints/`**: JSON files with frame-level keypoint data.
46
- - **`keypoints_video/`**: MP4 files visualizing the extracted keypoints overlaid on the original video.
47
-
48
- ---
49
-
50
- ## File Formats
51
-
52
- - **Video:** MP4 (1080p, 30 fps)
53
- - **Audio:** WAV (16-bit PCM, 48 kHz)
54
- - **Transcripts:** JSON format with word-level timestamps.
55
- - **Keypoints:** JSON format containing normalized keypoint coordinates.
56
- - **Keypoints Video:** MP4 format with keypoints overlaid on the original video frames.
57
-
58
- ---
59
-
60
- ## Keypoint Data
61
-
62
- The dataset includes detailed keypoint information extracted using a fusion of **OpenPose** and **MediaPipe** models, capturing comprehensive body pose and movement data.
63
-
64
- ### Keypoint Extraction Models
65
-
66
- - **OpenPose**:
67
- - Extracts 18 keypoints corresponding to major body joints.
68
- - Robust for full-body pose estimation.
69
- - **MediaPipe**:
70
- - Provides 32 additional keypoints with enhanced detail on hands and facial landmarks.
71
- - Precise capture of subtle gestures and expressions.
72
-
73
- ### Keypoint Structure
74
-
75
- Each keypoint is represented by:
76
-
77
- - **`x`**: Horizontal position, normalized to [0, 1] from left to right of the frame.
78
- - **`y`**: Vertical position, normalized to [0, 1] from top to bottom of the frame.
79
- - **`z`**: Depth, normalized to [-1, 1], with 0 at the camera plane.
80
- - **`visibility`**: Confidence score in [0.0, 1.0], indicating the keypoint's presence and accuracy.
81
-
82
- **Example Keypoint Entry:**
83
-
84
- ```json
85
- {
86
- "timestamp": 0.167,
87
- "keypoints": [
88
- {
89
- "x": 0.32285,
90
- "y": 0.25760,
91
- "z": -0.27907,
92
- "visibility": 0.99733
93
- },
94
- ...
95
- ],
96
- "transcript": "Today you're going to..."
97
- }
98
- ```
99
-
100
- ---
101
-
102
- ## Usage
103
-
104
- ### Downloading the Dataset
105
-
106
- To obtain access to the Allo-AVA dataset, please [contact us](#contact) for download instructions.
107
-
108
- ### Extracting the Dataset
109
-
110
- Once downloaded, extract the dataset to your desired directory:
111
-
112
- ```bash
113
- unzip allo-ava-dataset.zip -d /path/to/destination
114
- ```
115
-
116
- ### Accessing the Data
117
-
118
- You can use various programming languages or tools to process the dataset. Below is an example using Python.
119
-
120
- #### Example Usage in Python
121
-
122
- ```python
123
- import json
124
- import cv2
125
- import librosa
126
-
127
- # Paths to data
128
- video_id = "example_video_id"
129
- video_path = f"Allo-AVA/video/{video_id}.mp4"
130
- audio_path = f"Allo-AVA/audio/{video_id}.wav"
131
- transcript_path = f"Allo-AVA/transcript/{video_id}.json"
132
- keypoints_path = f"Allo-AVA/keypoints/{video_id}.json"
133
-
134
- # Load video
135
- cap = cv2.VideoCapture(video_path)
136
-
137
- # Load audio
138
- audio, sr = librosa.load(audio_path, sr=48000)
139
-
140
- # Load transcript
141
- with open(transcript_path, 'r') as f:
142
- transcript = json.load(f)
143
-
144
- # Load keypoints
145
- with open(keypoints_path, 'r') as f:
146
- keypoints = json.load(f)
147
-
148
- # Your processing code here
149
- # For example, iterate over keypoints and synchronize with video frames
150
- ```
151
-
152
- ---
153
-
154
- ## Ethical Considerations
155
-
156
- - **Data Source**: All videos were collected from publicly available sources such as YouTube, adhering to their terms of service.
157
- - **Privacy**:
158
- - **Face Blurring**: Faces in keypoint visualization videos have been blurred to protect individual identities.
159
- - **Voice Anonymization**: Voice pitch modification has been applied to audio files to anonymize speakers.
160
- - **Transcript Sanitization**: Personal identifiers (e.g., names, locations) in transcripts have been replaced with placeholders.
161
-
162
- - **Usage Guidelines**:
163
- - The dataset is intended for **research and educational purposes** only.
164
- - Users must comply with all applicable laws and regulations regarding data privacy and intellectual property.
165
- - Any use of the dataset must respect the rights and privacy of individuals represented in the data.
166
-
167
- ---
168
-
169
- ## License
170
-
171
- The Allo-AVA dataset is released under the **Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)**.
172
-
173
- Please refer to the [LICENSE](LICENSE) file for more details.
174
-
175
- ---
176
-
177
- ## Future Work
178
-
179
- Planned enhancements for the Allo-AVA dataset include:
180
-
181
- - **Expanding Linguistic and Cultural Diversity**: Incorporating more languages and cultural contexts to enable cross-cultural studies.
182
- - **Enhanced Annotations**: Adding fine-grained labels for gestures, emotions, and semantic meanings.
183
- - **Multiview Recordings**: Including multiview videos to support 3D reconstruction and the study of interactive behaviors.
184
- - **Improved Synchronization**: Refining multimodal synchronization to capture subtle expressions and micro-movements.
185
- - **Domain-Specific Subsets**: Creating subsets tailored to specific research domains or applications.
186
-
187
- ---
188
-
189
- ## Citing Allo-AVA
190
-
191
- If you use the Allo-AVA dataset in your research, please cite our paper:
192
-
193
- ```bibtex
194
- @inproceedings{punjwani2024alloava,
195
- title={Allo-AVA: A Large-Scale Multimodal Dataset for Allocentric Avatar Animation},
196
- author={Punjwani, Saif and Heck, Larry},
197
- booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing},
198
- year={2024}
199
- }
200
- ```
201
-
202
- ---
203
-
204
- ## Contact
205
-
206
- For any questions or issues regarding the Allo-AVA dataset, please contact:
207
-
208
- - **Saif Punjwani**
209
- - Email: [[email protected]](mailto:[email protected])
210
- - **Larry Heck**
211
- - Email: [[email protected]](mailto:[email protected])
212
-
213
- ---
214
-
215
- ## Acknowledgments
216
-
217
- We thank all the content creators whose public videos contributed to this dataset. This work was supported by [list any funding sources or supporting organizations].
218
-
219
- ---
220
-
221
- ## Disclaimer
222
-
223
- The authors are not responsible for any misuse of the dataset. Users are expected to comply with all relevant ethical guidelines and legal regulations when using the dataset.
224
-
225
- ---
226
-
227
- Thank you for your interest in the Allo-AVA dataset! We hope it serves as a valuable resource for advancing research in avatar animation and human-computer interaction.
 
 
 
 
 
 
 
1
  ---
2
+ license: cc
3
+ language:
4
+ - en
5
+ tags:
6
+ - code
7
+ size_categories:
8
+ - n>1T
9
+ ---