# Benchmarking setup 1B3 benchmarked with this slurm setup [tr3m-1B3-emb-norm-pile.slurm](../train/tr3-1B3-baseline/tr3m-1B3-emb-norm-pile.slurm) # 32GB node Benchmarking on 2 nodes to make sure we catch the inter-node slowdown. Measuring w/o BS-rampup so with full GBS ``` salloc --account=six@gpu --constraint=v100-32g --nodes=2 --ntasks=2 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=2:00:00 bash --rcfile $six_ALL_CCFRWORK/start-prod ``` measuring w/o rampup | NNODES | TP | PP | DP | MBS | Speed | TFlops | Notes | | -----: | --: | --: | --: | --: | ----: | -----: | --------------------: | | 2 | 1 | 1 | 8 | 1 | 29 | 47.0 | 16GB | | 2 | 1 | 1 | 8 | 2 | 29 | 47.0 | 17GB | | 2 | 1 | 1 | 8 | 4 | 28 | 48.7 | 20GB | | 2 | 1 | 1 | 8 | 8 | 28 | 48.7 | 25GB | | 2 | 1 | 2 | 4 | 1 | 30 | 45.4 | 10GB | | 2 | 1 | 2 | 4 | 2 | 29 | 47.0 | 11GB | | 2 | 1 | 2 | 4 | 8 | 29 | 47.0 | 15GB | | 2 | 1 | 2 | 4 | 16 | x | x | OOM | | 2 | 1 | 4 | 2 | 1 | 32 | 42.6 | 9GB | | 2 | 1 | 4 | 2 | 8 | 32 | 42.6 | 13GB | | 2 | 2 | 1 | 4 | 1 | 53 | 25.7 | 11GB | | | | | | | | | | ``` perl -le '$ng=8; $sp=29; $ms=1.3; $gbs=512; $seqlen=2048; print $ms*4*2*$seqlen*$gbs / ( $sp * $ng * 1e3)' ``` After removing `--checkpoint-activations` (which changes the factor to 3 from 4 for TFLOPs calculation) | NNODES | TP | PP | DP | MBS | Speed | TFlops | Notes | | -----: | --: | --: | --: | --: | ----: | -----: | --------------------: | | 2 | 1 | 1 | 8 | 1 | 23 | 44.4 | 27GB | | 2 | 1 | 2 | 4 | 1 | 23 | 44.4 | 21GB | | 2 | 1 | 4 | 2 | 1 | 25 | 40.8 | 19GB | | 2 | 1 | 4 | 2 | 2 | 24 | 42.5 | 30GB | | 2 | 2 | 1 | 4 | 1 | 39 | 26.2 | 21GB | | | | | | | | | | factor = 3 here (not 4) ``` perl -le '$ng=8; $sp=; $ms=1.3; $gbs=512; $seqlen=2048; print $ms*3*2*$seqlen*$gbs / ( $sp * $ng * 1e3)' ``` So the best throughput is with 1. removing `--checkpoint-activations` 2. config ``` PP_SIZE=1 # NLAYERS must be a multiple of PP_SIZE here TP_SIZE=1 MICRO_BATCH_SIZE=1 ``` Which means that one replica is 1 gpu. If BS rampup is used, e.g. starting from 32, that means that you can use max 32/1 = 32 gpus or 8 nodes. This of course can be manually adjusted to more nodes once BS is larger. Here is a possible schedule: | NNODES | BS | MBS | | ------: | ---: | ---: | | 8 | 32 | 1 | | 16 | 64 | 1 | | 32 | 128 | 1 | # 16GB node Same as above but with 16GB gpus ``` salloc --account=six@gpu --constraint=v100-16g --nodes=2 --ntasks=2 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=2:00:00 bash --rcfile $six_ALL_CCFRWORK/start-prod ``` | NNODES | TP | PP | DP | MBS | Speed | TFlops | Notes | | -----: | --: | --: | --: | --: | ----: | -----: | --------------------: | | 2 | 1 | 1 | 8 | 1 | 29 | 47.0 | 16GB borderline OOM | | 2 | 1 | 2 | 4 | 1 | 30 | 45.4 | 11GB | | 2 | 1 | 2 | 4 | 2 | 29 | 47.0 | 12GB | | 2 | 1 | 2 | 4 | 4 | 28 | 48.7 | 13GB | | 2 | 1 | 2 | 4 | 8 | x | x | OOM | | 2 | 1 | 4 | 2 | 1 | 32 | 42.6 | 9GB | | 2 | 1 | 4 | 2 | 4 | 30 | 45.4 | 11GB | | 2 | 1 | 4 | 2 | 8 | x | | OOM | | 2 | 1 | 8 | 1 | 1 | 37 | 36.8 | 9GB | | 2 | 1 | 8 | 1 | 4 | 35 | 38.9 | 11GB | | 2 | 1 | 8 | 1 | 8 | x | | OOM | | | | | | | | | | ``` perl -le '$ng=8; $sp=29; $ms=1.3; $gbs=512; $seqlen=2048; print $ms*4*2*$seqlen*$gbs / ( $sp * $ng * 1e3)' ``` So the best throughput is with: ``` PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here TP_SIZE=1 MICRO_BATCH_SIZE=4 ``` Which means that one replica is 2 gpus. But there is the BS rampup constraint for first values. but if BS rampup is used, e.g. starting from 32, that means that you can use max 32/4 = 8 replicas, 16 gpus, 4 nodes only. To use 8 nodes use MBS=2 and so it's just slightly slower (32/2=16 replicas or 32 gpus or 8 nodes). To use 16 nodes use MBS=1 and so it's again slightly slower (32/1=32 replicas or 64 gpus or 16 nodes). It's also possible to start with MBS=1 and then down the road switch to MBS=2 and then finally MBS=4 and later use even more nodes. So here is a possible schedule that will require manual adjustments of the slurm file as the BS is going through a rampup to get the maximum speeds. | NNODES | BS | MBS | | ------: | ---: | ---: | | 16 | 32 | 1 | | 16 | 64 | 2 | | 16 | 128 | 4 | | 32 | 256 | 4 | | 64 | 512 | 4 | ## calibration Cuda kernels: ``` python -c "import torch; x = torch.ones(1).cuda(); import time; time.sleep(100)" & ``` V100 16GB 1113MiB V100 32GB 1113MiB (same memory!)