applied-ai-018
commited on
Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00010-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00040-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00059-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00070-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00072-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00074-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00089-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00100-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00105-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00126-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00135-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00136-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00140-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00200-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00202-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00204-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00252-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00256-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00295-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00320-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00324-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00326-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00328-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00344-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00360-of-00532.arrow +3 -0
- bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00495-of-00532.arrow +3 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/concat.py +103 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11-1b3-ml-evalharness-results_lm-eval_global_step340500_2022-07-13-11-29-13.json +172 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-12-22-45-57.json +0 -0
- bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json +2169 -0
- bigscience/evaluation/results/tr11/conversion/json_to_markdown.py +307 -0
- bigscience/evaluation/results/tr11/opt/bslmeval.json +0 -0
- bigscience/evaluation/results/tr11/opt/humaneval_temp02.json +1 -0
- bigscience/evaluation/results/tr11/opt/humaneval_temp06.json +1 -0
- bigscience/evaluation/results/tr11/opt/humaneval_temp08.json +1 -0
- bigscience/evaluation/results/tr11/scripts/download_bsevalharness.py +21 -0
- bigscience/evaluation/results/tr11/scripts/multi_eurlex_tmp.slurm +63 -0
- bigscience/evaluation/results/tr11/scripts/report-to-csv.py +58 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_176b.slurm +128 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_350m.slurm +110 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_6b3.slurm +101 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_760m.slurm +110 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11-176b-ml.slurm +122 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11b-1b3-ml.slurm +122 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11d-750m-ml.slurm +120 -0
- bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11f-6b3-ml.slurm +121 -0
- bigscience/evaluation/results/tr11/scripts/run_evalharness_deepspeed.md +158 -0
- bigscience/evaluation/results/tr11/scripts/run_evalharness_deepspeed.slurm +98 -0
- bigscience/evaluation/results/tr11/scripts/run_evalharness_tr11b-1b3-ml.slurm +120 -0
- bigscience/evaluation/results/tr11/scripts/run_evalharness_tr11c-2b5-ml.slurm +120 -0
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00010-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4807894ff54ad64db5a649d7e90cb4e3e9f8a26bfb685b7f432ea1eb4394fc8b
|
3 |
+
size 502704664
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00040-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50de72f983c0cd96d1d7666f0f9954c469d528b36c125cf814cdda194dac659
|
3 |
+
size 501774384
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00059-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aac08a2949eb916e497ce22f237fb4369a0c8fd1556bceae0b2fa0b1f6b5d7bd
|
3 |
+
size 501785176
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00070-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6020c4344c228e8755cae6ec4b1500137cc4783dcf962746166e971ca5b409f8
|
3 |
+
size 503043536
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00072-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6e3dc92ae3b90d778e052af7ad3e04e3a7ba64590cce7cd9283833e3528e303
|
3 |
+
size 504777888
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00074-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d25f7ef19eb2f2b03c30a64093aec0051903936d654e2b84e57ae5f3229796c
|
3 |
+
size 503353848
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00089-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10685c132e62df801092ae15c334f2d41e6b6c4dc3a57c654aa21de0fc6d385d
|
3 |
+
size 504698888
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00100-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cdf89b59c0c71e2a41f148011c746392a17b0bda4cee09cc32bf2f59d6abcec
|
3 |
+
size 504413528
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00105-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac97ee67f09f4ce7d2c1d749b876d0cf12163d1e2b6259022f6992c3862c1804
|
3 |
+
size 503532080
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00126-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06bdfb9f767e4686fbe816c6f17f7f7b30255420ea5602e5e28a5b6ccd2b3a33
|
3 |
+
size 501036656
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00135-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72409ff2a64d68480801880f7e07f96be0fcdc6d284cc6a1cbcf603500c12ac5
|
3 |
+
size 500714592
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00136-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3b6689190dec993e818c370580e7693afcdd8ce0ec519327e1950c3e8d20657
|
3 |
+
size 508477840
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00140-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e13af03d22307d0acc99bbe230f09229d5a05cd02dcf4a22d85d2f6fdc347c9d
|
3 |
+
size 505473128
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00200-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9129643c9a3b941f028355a008ed2930709edddb8ec96f9ffa536bd051a701d
|
3 |
+
size 506929072
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00202-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44962dbf63ef79c3b59afd465b7c574e777582fa1e5a4762b72ce5e142123e1e
|
3 |
+
size 503715992
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00204-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5360abb8c1653afae61d587e9219f360d1cb82fda2c7cd40158de1532a72a78e
|
3 |
+
size 500887496
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00252-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51ae7970b358b5731a8f124797e981f02fd1be35c0dc76299ce936886e5da17d
|
3 |
+
size 501961432
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00256-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5547b8a852311739cfb48ae53381c2e87f2e9673eea842e35919b9169337a301
|
3 |
+
size 504684008
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00295-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07d7823b5bd634d72fc0814a4cd2cacdf8e12da3d3ef75e9acf8b82ee985ebbd
|
3 |
+
size 505840960
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00320-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efeea6d8a6dca9c3ca851360cc61624a02c616ce3e53777280d807946ef1a107
|
3 |
+
size 504561128
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00324-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1db0a503e57ccd733520c3fe775c261f06c241e68c3442a16f7d9a535fa7595e
|
3 |
+
size 506267152
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00326-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bb76369cc5054c121fe828e02299ee8dfa8c38758b98505468c4d9c5d6248da
|
3 |
+
size 501325880
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00328-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd4ea31c7e8c9c4ec734346406d6155af92b2b1cceab5c0579e5470b0b852aea
|
3 |
+
size 506335368
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00344-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db08a0f23e31ade1361180c9ec554700b6118ec4628c909f8b7812d06973c740
|
3 |
+
size 502926768
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00360-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a1a4413cb358c425279de1492be218dd8c9584b4c70d2365a515ef0b51d2647
|
3 |
+
size 502754056
|
bigscience/data/oscar/cache/oscar/unshuffled_deduplicated_zh/1.0.0/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar-train-00495-of-00532.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ebc298a4c86d42ec40d85b5a5ede8739dbd2569d1dfe8cc8a5b48893780733
|
3 |
+
size 506053128
|
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/concat.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
from pathlib import Path
|
5 |
+
from re import Pattern
|
6 |
+
from typing import List, Dict
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--results-dir", required=True, type=Path, help="Path to the list of results")
|
12 |
+
parser.add_argument("--concatenate-output-file", required=True, type=Path, help="Path to store the final output file")
|
13 |
+
return parser.parse_args()
|
14 |
+
|
15 |
+
MODEL = "tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500"
|
16 |
+
# MODEL = "global_step95000"
|
17 |
+
RESULTS_REGEX = re.compile(rf"(eai|bs)_results_lm-eval_{MODEL}_(\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2})_backup\.json")
|
18 |
+
RESULTS_REGEX = re.compile(rf"{MODEL}_*.json")
|
19 |
+
#tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json
|
20 |
+
def get_all_files_that_match_results_in_folder(root_folder: Path) -> List[Path]:
|
21 |
+
json_files = []
|
22 |
+
for folder in root_folder.iterdir():
|
23 |
+
if folder.is_dir():
|
24 |
+
json_files += get_all_files_that_match_results_in_folder(folder)
|
25 |
+
else:
|
26 |
+
# it's actually a file
|
27 |
+
file = folder
|
28 |
+
|
29 |
+
#match = RESULTS_REGEX.match(file.name)
|
30 |
+
|
31 |
+
if not str(file.name).endswith("json"):
|
32 |
+
continue
|
33 |
+
else:
|
34 |
+
json_files.append(file)
|
35 |
+
return json_files
|
36 |
+
|
37 |
+
def sort_dict(dictionary: Dict) -> Dict:
|
38 |
+
results = {}
|
39 |
+
|
40 |
+
for key, value in sorted(dictionary.items()):
|
41 |
+
new_value = value
|
42 |
+
|
43 |
+
if isinstance(value, dict):
|
44 |
+
new_value = sort_dict(new_value)
|
45 |
+
elif isinstance(value, list):
|
46 |
+
new_value = sorted(value)
|
47 |
+
|
48 |
+
results[key] = new_value
|
49 |
+
|
50 |
+
return results
|
51 |
+
|
52 |
+
def main():
|
53 |
+
args = get_args()
|
54 |
+
|
55 |
+
# Get all json files
|
56 |
+
json_files = get_all_files_that_match_results_in_folder(args.results_dir)
|
57 |
+
print("GOT", json_files)
|
58 |
+
# Merge all json files
|
59 |
+
final_result = {
|
60 |
+
"results": {},
|
61 |
+
"versions": {}
|
62 |
+
}
|
63 |
+
for file in json_files:
|
64 |
+
with open(file, "r") as fi:
|
65 |
+
task_result = json.load(fi)
|
66 |
+
|
67 |
+
#match = RESULTS_REGEX.match(file.name)
|
68 |
+
#assert match is not None
|
69 |
+
prefix = "bs" if "bs" in file.name else "eai"#match.group(1)
|
70 |
+
datetime_string = file.name[file.name.index("global_step340500_") + len("global_step340500_"):].replace(".json", "")#match.group(2)
|
71 |
+
|
72 |
+
if prefix == "eai":
|
73 |
+
results_key = "results"
|
74 |
+
elif prefix == "bs":
|
75 |
+
results_key = "table_results"
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Unsupported key: {prefix}")
|
78 |
+
|
79 |
+
for key, value in task_result[results_key].items():
|
80 |
+
if key not in final_result["results"]:
|
81 |
+
final_result["results"][key] = {
|
82 |
+
datetime_string: value
|
83 |
+
}
|
84 |
+
#else:
|
85 |
+
# assert datetime_string not in final_result["results"][key]
|
86 |
+
# final_result["results"][key][datetime_string] = value
|
87 |
+
|
88 |
+
for key, value in task_result["versions"].items():
|
89 |
+
final_result["versions"][key] = value
|
90 |
+
|
91 |
+
# We sort dict, better for serialization
|
92 |
+
print(final_result)
|
93 |
+
final_result = sort_dict(final_result)
|
94 |
+
|
95 |
+
# Save result
|
96 |
+
with open(args.concatenate_output_file, "w") as fo:
|
97 |
+
json.dump(final_result, fo, indent=2)
|
98 |
+
|
99 |
+
pass
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main()
|
103 |
+
|
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11-1b3-ml-evalharness-results_lm-eval_global_step340500_2022-07-13-11-29-13.json
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"acc": 0.23464163822525597,
|
5 |
+
"acc_stderr": 0.012383873560768673,
|
6 |
+
"acc_norm": 0.26791808873720135,
|
7 |
+
"acc_norm_stderr": 0.012942030195136423
|
8 |
+
},
|
9 |
+
"arc_easy": {
|
10 |
+
"acc": 0.5631313131313131,
|
11 |
+
"acc_stderr": 0.010177672928157678,
|
12 |
+
"acc_norm": 0.4810606060606061,
|
13 |
+
"acc_norm_stderr": 0.010252420496894487
|
14 |
+
},
|
15 |
+
"boolq": {
|
16 |
+
"acc": 0.617737003058104,
|
17 |
+
"acc_stderr": 0.008499149690449272
|
18 |
+
},
|
19 |
+
"copa": {
|
20 |
+
"acc": 0.7,
|
21 |
+
"acc_stderr": 0.046056618647183814
|
22 |
+
},
|
23 |
+
"headqa": {
|
24 |
+
"acc": 0.25419401896425964,
|
25 |
+
"acc_stderr": 0.008316509290190668,
|
26 |
+
"acc_norm": 0.29576951130561635,
|
27 |
+
"acc_norm_stderr": 0.008717251898361422
|
28 |
+
},
|
29 |
+
"hellaswag": {
|
30 |
+
"acc": 0.37621987651862177,
|
31 |
+
"acc_stderr": 0.004834461997944872,
|
32 |
+
"acc_norm": 0.46564429396534557,
|
33 |
+
"acc_norm_stderr": 0.004977988452502641
|
34 |
+
},
|
35 |
+
"lambada": {
|
36 |
+
"ppl": 12.583447597222621,
|
37 |
+
"ppl_stderr": 0.4021518609838198,
|
38 |
+
"acc": 0.46322530564719583,
|
39 |
+
"acc_stderr": 0.006947110835634445
|
40 |
+
},
|
41 |
+
"logiqa": {
|
42 |
+
"acc": 0.21658986175115208,
|
43 |
+
"acc_stderr": 0.016156860583178303,
|
44 |
+
"acc_norm": 0.28110599078341014,
|
45 |
+
"acc_norm_stderr": 0.017632374626460005
|
46 |
+
},
|
47 |
+
"mathqa": {
|
48 |
+
"acc": 0.2489112227805695,
|
49 |
+
"acc_stderr": 0.007915319798861361,
|
50 |
+
"acc_norm": 0.2422110552763819,
|
51 |
+
"acc_norm_stderr": 0.007842810183504986
|
52 |
+
},
|
53 |
+
"mc_taco": {
|
54 |
+
"em": 0.12537537537537538,
|
55 |
+
"f1": 0.4747075325110886
|
56 |
+
},
|
57 |
+
"mrpc": {
|
58 |
+
"acc": 0.6813725490196079,
|
59 |
+
"acc_stderr": 0.023095996571841474,
|
60 |
+
"f1": 0.8104956268221574,
|
61 |
+
"f1_stderr": 0.016329211455484924
|
62 |
+
},
|
63 |
+
"multirc": {
|
64 |
+
"acc": 0.011542497376705142,
|
65 |
+
"acc_stderr": 0.003461867320927179
|
66 |
+
},
|
67 |
+
"openbookqa": {
|
68 |
+
"acc": 0.214,
|
69 |
+
"acc_stderr": 0.01835979750238702,
|
70 |
+
"acc_norm": 0.298,
|
71 |
+
"acc_norm_stderr": 0.020475118092988978
|
72 |
+
},
|
73 |
+
"piqa": {
|
74 |
+
"acc": 0.6871599564744287,
|
75 |
+
"acc_stderr": 0.010817714425701112,
|
76 |
+
"acc_norm": 0.7002176278563657,
|
77 |
+
"acc_norm_stderr": 0.010689686967138092
|
78 |
+
},
|
79 |
+
"prost": {
|
80 |
+
"acc": 0.23505550811272416,
|
81 |
+
"acc_stderr": 0.0030979423271461875,
|
82 |
+
"acc_norm": 0.2670260461144321,
|
83 |
+
"acc_norm_stderr": 0.0032321702981822874
|
84 |
+
},
|
85 |
+
"pubmedqa": {
|
86 |
+
"acc": 0.56,
|
87 |
+
"acc_stderr": 0.015704987954361798
|
88 |
+
},
|
89 |
+
"qnli": {
|
90 |
+
"acc": 0.4962474830679114,
|
91 |
+
"acc_stderr": 0.006765220016415222
|
92 |
+
},
|
93 |
+
"qqp": {
|
94 |
+
"acc": 0.3681424684640119,
|
95 |
+
"acc_stderr": 0.0023986729832071816,
|
96 |
+
"f1": 0.5381138352498734,
|
97 |
+
"f1_stderr": 0.002555831569895799
|
98 |
+
},
|
99 |
+
"race": {
|
100 |
+
"acc": 0.3320574162679426,
|
101 |
+
"acc_stderr": 0.014575582129545914
|
102 |
+
},
|
103 |
+
"rte": {
|
104 |
+
"acc": 0.5342960288808665,
|
105 |
+
"acc_stderr": 0.030025579819366426
|
106 |
+
},
|
107 |
+
"sciq": {
|
108 |
+
"acc": 0.853,
|
109 |
+
"acc_stderr": 0.011203415395160335,
|
110 |
+
"acc_norm": 0.771,
|
111 |
+
"acc_norm_stderr": 0.013294199326613609
|
112 |
+
},
|
113 |
+
"sst": {
|
114 |
+
"acc": 0.6823394495412844,
|
115 |
+
"acc_stderr": 0.015775124845202545
|
116 |
+
},
|
117 |
+
"triviaqa": {
|
118 |
+
"acc": 0.0313798285158667,
|
119 |
+
"acc_stderr": 0.0016392014864795154
|
120 |
+
},
|
121 |
+
"webqs": {
|
122 |
+
"acc": 0.012795275590551181,
|
123 |
+
"acc_stderr": 0.0024938680596856277
|
124 |
+
},
|
125 |
+
"wic": {
|
126 |
+
"acc": 0.5,
|
127 |
+
"acc_stderr": 0.01981072129375818
|
128 |
+
},
|
129 |
+
"winogrande": {
|
130 |
+
"acc": 0.5730071033938438,
|
131 |
+
"acc_stderr": 0.013901878072575058
|
132 |
+
},
|
133 |
+
"wnli": {
|
134 |
+
"acc": 0.43661971830985913,
|
135 |
+
"acc_stderr": 0.0592793555841297
|
136 |
+
},
|
137 |
+
"wsc": {
|
138 |
+
"acc": 0.36538461538461536,
|
139 |
+
"acc_stderr": 0.0474473339327792
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"versions": {
|
143 |
+
"arc_challenge": 0,
|
144 |
+
"arc_easy": 0,
|
145 |
+
"boolq": 1,
|
146 |
+
"copa": 0,
|
147 |
+
"headqa": 0,
|
148 |
+
"hellaswag": 0,
|
149 |
+
"lambada": 0,
|
150 |
+
"logiqa": 0,
|
151 |
+
"mathqa": 0,
|
152 |
+
"mc_taco": 0,
|
153 |
+
"mrpc": 0,
|
154 |
+
"multirc": 1,
|
155 |
+
"openbookqa": 0,
|
156 |
+
"piqa": 0,
|
157 |
+
"prost": 0,
|
158 |
+
"pubmedqa": 0,
|
159 |
+
"qnli": 0,
|
160 |
+
"qqp": 0,
|
161 |
+
"race": 1,
|
162 |
+
"rte": 0,
|
163 |
+
"sciq": 0,
|
164 |
+
"sst": 0,
|
165 |
+
"triviaqa": 0,
|
166 |
+
"webqs": 0,
|
167 |
+
"wic": 0,
|
168 |
+
"winogrande": 0,
|
169 |
+
"wnli": 1,
|
170 |
+
"wsc": 0
|
171 |
+
}
|
172 |
+
}
|
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-12-22-45-57.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-14-10-03-25.json
ADDED
@@ -0,0 +1,2169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "wic",
|
5 |
+
"prompt_name": "GPT-3-prompt",
|
6 |
+
"acc": 0.5,
|
7 |
+
"fixed_answer_choice_list": [
|
8 |
+
"No",
|
9 |
+
"Yes"
|
10 |
+
],
|
11 |
+
"dataset_path": "super_glue",
|
12 |
+
"dataset_name": "wic",
|
13 |
+
"subset": null,
|
14 |
+
"prompt_id": "c3a0a5d8-cfe9-4a7f-8a3c-3c526e0ad0c6",
|
15 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
16 |
+
"prompt_original_task": true,
|
17 |
+
"comment": "",
|
18 |
+
"acc_stderr": 0.01981072129375818
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"task_name": "wic",
|
22 |
+
"prompt_name": "GPT-3-prompt",
|
23 |
+
"acc_norm": 0.5,
|
24 |
+
"fixed_answer_choice_list": [
|
25 |
+
"No",
|
26 |
+
"Yes"
|
27 |
+
],
|
28 |
+
"dataset_path": "super_glue",
|
29 |
+
"dataset_name": "wic",
|
30 |
+
"subset": null,
|
31 |
+
"prompt_id": "c3a0a5d8-cfe9-4a7f-8a3c-3c526e0ad0c6",
|
32 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
33 |
+
"prompt_original_task": true,
|
34 |
+
"comment": "",
|
35 |
+
"acc_norm_stderr": 0.01981072129375818
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"task_name": "wic",
|
39 |
+
"prompt_name": "GPT-3-prompt-with-label",
|
40 |
+
"acc": 0.49216300940438873,
|
41 |
+
"fixed_answer_choice_list": [
|
42 |
+
"No",
|
43 |
+
"Yes"
|
44 |
+
],
|
45 |
+
"dataset_path": "super_glue",
|
46 |
+
"dataset_name": "wic",
|
47 |
+
"subset": null,
|
48 |
+
"prompt_id": "d9e1db2a-ab0b-4621-bb41-01d5788d3873",
|
49 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above? Yes, No?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
50 |
+
"prompt_original_task": true,
|
51 |
+
"comment": "",
|
52 |
+
"acc_stderr": 0.019808287657813832
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"task_name": "wic",
|
56 |
+
"prompt_name": "GPT-3-prompt-with-label",
|
57 |
+
"acc_norm": 0.5,
|
58 |
+
"fixed_answer_choice_list": [
|
59 |
+
"No",
|
60 |
+
"Yes"
|
61 |
+
],
|
62 |
+
"dataset_path": "super_glue",
|
63 |
+
"dataset_name": "wic",
|
64 |
+
"subset": null,
|
65 |
+
"prompt_id": "d9e1db2a-ab0b-4621-bb41-01d5788d3873",
|
66 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nQuestion: Is the word '{{word}}' used in the same sense in the two sentences above? Yes, No?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
67 |
+
"prompt_original_task": true,
|
68 |
+
"comment": "",
|
69 |
+
"acc_norm_stderr": 0.01981072129375818
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"task_name": "wic",
|
73 |
+
"prompt_name": "affirmation_true_or_false",
|
74 |
+
"acc": 0.5,
|
75 |
+
"fixed_answer_choice_list": [
|
76 |
+
"False",
|
77 |
+
"True"
|
78 |
+
],
|
79 |
+
"dataset_path": "super_glue",
|
80 |
+
"dataset_name": "wic",
|
81 |
+
"subset": null,
|
82 |
+
"prompt_id": "725b5ed0-7728-4890-95a4-a74cb7ae1bb4",
|
83 |
+
"prompt_jinja": "Sentence A: {{sentence1}}\nSentence B: {{sentence2}}\n\n\"{{word}}\" has a similar meaning in sentences A and B. True or False?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
84 |
+
"prompt_original_task": true,
|
85 |
+
"comment": "",
|
86 |
+
"acc_stderr": 0.01981072129375818
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"task_name": "wic",
|
90 |
+
"prompt_name": "affirmation_true_or_false",
|
91 |
+
"acc_norm": 0.5078369905956113,
|
92 |
+
"fixed_answer_choice_list": [
|
93 |
+
"False",
|
94 |
+
"True"
|
95 |
+
],
|
96 |
+
"dataset_path": "super_glue",
|
97 |
+
"dataset_name": "wic",
|
98 |
+
"subset": null,
|
99 |
+
"prompt_id": "725b5ed0-7728-4890-95a4-a74cb7ae1bb4",
|
100 |
+
"prompt_jinja": "Sentence A: {{sentence1}}\nSentence B: {{sentence2}}\n\n\"{{word}}\" has a similar meaning in sentences A and B. True or False?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
101 |
+
"prompt_original_task": true,
|
102 |
+
"comment": "",
|
103 |
+
"acc_norm_stderr": 0.019808287657813832
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"task_name": "wic",
|
107 |
+
"prompt_name": "grammar_homework",
|
108 |
+
"acc": 0.5094043887147336,
|
109 |
+
"fixed_answer_choice_list": [
|
110 |
+
"No",
|
111 |
+
"Yes"
|
112 |
+
],
|
113 |
+
"dataset_path": "super_glue",
|
114 |
+
"dataset_name": "wic",
|
115 |
+
"subset": null,
|
116 |
+
"prompt_id": "611d13dc-d414-4b9b-9204-e4f325e859e7",
|
117 |
+
"prompt_jinja": "Homework\n\nDecide whether the word \"{{word}}\" is used with the same meaning in the two following sentences. Answer by yes or no.\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
118 |
+
"prompt_original_task": true,
|
119 |
+
"comment": "",
|
120 |
+
"acc_stderr": 0.019807216763271497
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"task_name": "wic",
|
124 |
+
"prompt_name": "grammar_homework",
|
125 |
+
"acc_norm": 0.49843260188087773,
|
126 |
+
"fixed_answer_choice_list": [
|
127 |
+
"No",
|
128 |
+
"Yes"
|
129 |
+
],
|
130 |
+
"dataset_path": "super_glue",
|
131 |
+
"dataset_name": "wic",
|
132 |
+
"subset": null,
|
133 |
+
"prompt_id": "611d13dc-d414-4b9b-9204-e4f325e859e7",
|
134 |
+
"prompt_jinja": "Homework\n\nDecide whether the word \"{{word}}\" is used with the same meaning in the two following sentences. Answer by yes or no.\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
135 |
+
"prompt_original_task": true,
|
136 |
+
"comment": "",
|
137 |
+
"acc_norm_stderr": 0.019810623954060382
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"task_name": "wic",
|
141 |
+
"prompt_name": "polysemous",
|
142 |
+
"acc": 0.512539184952978,
|
143 |
+
"fixed_answer_choice_list": [
|
144 |
+
"No",
|
145 |
+
"Yes"
|
146 |
+
],
|
147 |
+
"dataset_path": "super_glue",
|
148 |
+
"dataset_name": "wic",
|
149 |
+
"subset": null,
|
150 |
+
"prompt_id": "dd2080cf-3117-49ba-9aff-c988a21fdb69",
|
151 |
+
"prompt_jinja": "The word \"{{word}}\" has multiple meanings. Does it have the same meaning in sentences 1 and 2? Yes or no?\n\nSentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
152 |
+
"prompt_original_task": true,
|
153 |
+
"comment": "",
|
154 |
+
"acc_stderr": 0.019804490588592596
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"task_name": "wic",
|
158 |
+
"prompt_name": "polysemous",
|
159 |
+
"acc_norm": 0.49843260188087773,
|
160 |
+
"fixed_answer_choice_list": [
|
161 |
+
"No",
|
162 |
+
"Yes"
|
163 |
+
],
|
164 |
+
"dataset_path": "super_glue",
|
165 |
+
"dataset_name": "wic",
|
166 |
+
"subset": null,
|
167 |
+
"prompt_id": "dd2080cf-3117-49ba-9aff-c988a21fdb69",
|
168 |
+
"prompt_jinja": "The word \"{{word}}\" has multiple meanings. Does it have the same meaning in sentences 1 and 2? Yes or no?\n\nSentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
169 |
+
"prompt_original_task": true,
|
170 |
+
"comment": "",
|
171 |
+
"acc_norm_stderr": 0.019810623954060382
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"task_name": "wic",
|
175 |
+
"prompt_name": "question-context",
|
176 |
+
"acc": 0.5266457680250783,
|
177 |
+
"fixed_answer_choice_list": [
|
178 |
+
"No",
|
179 |
+
"Yes"
|
180 |
+
],
|
181 |
+
"dataset_path": "super_glue",
|
182 |
+
"dataset_name": "wic",
|
183 |
+
"subset": null,
|
184 |
+
"prompt_id": "cfbc1637-10b8-4f20-a31c-55292f3cebd0",
|
185 |
+
"prompt_jinja": "Determine if the word '{{word}}' is used in the same way in the two sentences below. \n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
186 |
+
"prompt_original_task": true,
|
187 |
+
"comment": "",
|
188 |
+
"acc_stderr": 0.019782570188812167
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"task_name": "wic",
|
192 |
+
"prompt_name": "question-context",
|
193 |
+
"acc_norm": 0.5031347962382445,
|
194 |
+
"fixed_answer_choice_list": [
|
195 |
+
"No",
|
196 |
+
"Yes"
|
197 |
+
],
|
198 |
+
"dataset_path": "super_glue",
|
199 |
+
"dataset_name": "wic",
|
200 |
+
"subset": null,
|
201 |
+
"prompt_id": "cfbc1637-10b8-4f20-a31c-55292f3cebd0",
|
202 |
+
"prompt_jinja": "Determine if the word '{{word}}' is used in the same way in the two sentences below. \n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
203 |
+
"prompt_original_task": true,
|
204 |
+
"comment": "",
|
205 |
+
"acc_norm_stderr": 0.019810331932097542
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"task_name": "wic",
|
209 |
+
"prompt_name": "question-context-meaning",
|
210 |
+
"acc": 0.5438871473354232,
|
211 |
+
"fixed_answer_choice_list": [
|
212 |
+
"No",
|
213 |
+
"Yes"
|
214 |
+
],
|
215 |
+
"dataset_path": "super_glue",
|
216 |
+
"dataset_name": "wic",
|
217 |
+
"subset": null,
|
218 |
+
"prompt_id": "3503ead5-4fa5-4f77-95dc-f0c2ed3eecdc",
|
219 |
+
"prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
220 |
+
"prompt_original_task": true,
|
221 |
+
"comment": "",
|
222 |
+
"acc_stderr": 0.019734259601993404
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"task_name": "wic",
|
226 |
+
"prompt_name": "question-context-meaning",
|
227 |
+
"acc_norm": 0.5015673981191222,
|
228 |
+
"fixed_answer_choice_list": [
|
229 |
+
"No",
|
230 |
+
"Yes"
|
231 |
+
],
|
232 |
+
"dataset_path": "super_glue",
|
233 |
+
"dataset_name": "wic",
|
234 |
+
"subset": null,
|
235 |
+
"prompt_id": "3503ead5-4fa5-4f77-95dc-f0c2ed3eecdc",
|
236 |
+
"prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
237 |
+
"prompt_original_task": true,
|
238 |
+
"comment": "",
|
239 |
+
"acc_norm_stderr": 0.019810623954060382
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"task_name": "wic",
|
243 |
+
"prompt_name": "question-context-meaning-with-label",
|
244 |
+
"acc": 0.5156739811912225,
|
245 |
+
"fixed_answer_choice_list": [
|
246 |
+
"No",
|
247 |
+
"Yes"
|
248 |
+
],
|
249 |
+
"dataset_path": "super_glue",
|
250 |
+
"dataset_name": "wic",
|
251 |
+
"subset": null,
|
252 |
+
"prompt_id": "14e73f39-a0d1-44c2-b9a4-4e48f9f1608e",
|
253 |
+
"prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences? Yes, No?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
254 |
+
"prompt_original_task": true,
|
255 |
+
"comment": "",
|
256 |
+
"acc_stderr": 0.019800984955347847
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"task_name": "wic",
|
260 |
+
"prompt_name": "question-context-meaning-with-label",
|
261 |
+
"acc_norm": 0.5015673981191222,
|
262 |
+
"fixed_answer_choice_list": [
|
263 |
+
"No",
|
264 |
+
"Yes"
|
265 |
+
],
|
266 |
+
"dataset_path": "super_glue",
|
267 |
+
"dataset_name": "wic",
|
268 |
+
"subset": null,
|
269 |
+
"prompt_id": "14e73f39-a0d1-44c2-b9a4-4e48f9f1608e",
|
270 |
+
"prompt_jinja": "Does the word \"{{word}}\" have the same meaning in these two sentences? Yes, No?\n{{sentence1}}\n{{sentence2}}\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
271 |
+
"prompt_original_task": true,
|
272 |
+
"comment": "",
|
273 |
+
"acc_norm_stderr": 0.019810623954060382
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"task_name": "wic",
|
277 |
+
"prompt_name": "same_sense",
|
278 |
+
"acc": 0.5047021943573667,
|
279 |
+
"fixed_answer_choice_list": [
|
280 |
+
"No",
|
281 |
+
"Yes"
|
282 |
+
],
|
283 |
+
"dataset_path": "super_glue",
|
284 |
+
"dataset_name": "wic",
|
285 |
+
"subset": null,
|
286 |
+
"prompt_id": "ce8b5a93-1841-4897-84db-b100f1c84f4b",
|
287 |
+
"prompt_jinja": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n\nDetermine whether the word \"{{word}}\" is used in the same sense in both sentences. Yes or no?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
288 |
+
"prompt_original_task": true,
|
289 |
+
"comment": "",
|
290 |
+
"acc_stderr": 0.019809845219259763
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"task_name": "wic",
|
294 |
+
"prompt_name": "same_sense",
|
295 |
+
"acc_norm": 0.5,
|
296 |
+
"fixed_answer_choice_list": [
|
297 |
+
"No",
|
298 |
+
"Yes"
|
299 |
+
],
|
300 |
+
"dataset_path": "super_glue",
|
301 |
+
"dataset_name": "wic",
|
302 |
+
"subset": null,
|
303 |
+
"prompt_id": "ce8b5a93-1841-4897-84db-b100f1c84f4b",
|
304 |
+
"prompt_jinja": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\n\nDetermine whether the word \"{{word}}\" is used in the same sense in both sentences. Yes or no?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
305 |
+
"prompt_original_task": true,
|
306 |
+
"comment": "",
|
307 |
+
"acc_norm_stderr": 0.01981072129375818
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"task_name": "wic",
|
311 |
+
"prompt_name": "similar-sense",
|
312 |
+
"acc": 0.542319749216301,
|
313 |
+
"fixed_answer_choice_list": [
|
314 |
+
"No",
|
315 |
+
"Yes"
|
316 |
+
],
|
317 |
+
"dataset_path": "super_glue",
|
318 |
+
"dataset_name": "wic",
|
319 |
+
"subset": null,
|
320 |
+
"prompt_id": "f934a96d-fe4d-4075-aa47-5595b9a604c7",
|
321 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nSimilar sense of {{word}}?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
322 |
+
"prompt_original_task": true,
|
323 |
+
"comment": "",
|
324 |
+
"acc_stderr": 0.01973963328373276
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"task_name": "wic",
|
328 |
+
"prompt_name": "similar-sense",
|
329 |
+
"acc_norm": 0.5,
|
330 |
+
"fixed_answer_choice_list": [
|
331 |
+
"No",
|
332 |
+
"Yes"
|
333 |
+
],
|
334 |
+
"dataset_path": "super_glue",
|
335 |
+
"dataset_name": "wic",
|
336 |
+
"subset": null,
|
337 |
+
"prompt_id": "f934a96d-fe4d-4075-aa47-5595b9a604c7",
|
338 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nSimilar sense of {{word}}?\n||| {% if label != -1%}\n{{answer_choices[label]}}\n{% endif %}",
|
339 |
+
"prompt_original_task": true,
|
340 |
+
"comment": "",
|
341 |
+
"acc_norm_stderr": 0.01981072129375818
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"task_name": "wsc",
|
345 |
+
"prompt_name": "GPT-3 Style",
|
346 |
+
"acc": 0.36538461538461536,
|
347 |
+
"fixed_answer_choice_list": [
|
348 |
+
"No",
|
349 |
+
"Yes"
|
350 |
+
],
|
351 |
+
"dataset_path": "super_glue",
|
352 |
+
"dataset_name": "wsc.fixed",
|
353 |
+
"subset": null,
|
354 |
+
"prompt_id": "7d377293-d043-4b6c-8ec1-d61eaf14ec67",
|
355 |
+
"prompt_jinja": "Passage: {{ text }} \n\nQuestion: In the passage above, does the pronoun \"{{ span2_text }}\" refer to {{ span1_text }}?\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
356 |
+
"prompt_original_task": true,
|
357 |
+
"comment": "",
|
358 |
+
"acc_stderr": 0.0474473339327792
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"task_name": "wsc",
|
362 |
+
"prompt_name": "GPT-3 Style",
|
363 |
+
"acc_norm": 0.36538461538461536,
|
364 |
+
"fixed_answer_choice_list": [
|
365 |
+
"No",
|
366 |
+
"Yes"
|
367 |
+
],
|
368 |
+
"dataset_path": "super_glue",
|
369 |
+
"dataset_name": "wsc.fixed",
|
370 |
+
"subset": null,
|
371 |
+
"prompt_id": "7d377293-d043-4b6c-8ec1-d61eaf14ec67",
|
372 |
+
"prompt_jinja": "Passage: {{ text }} \n\nQuestion: In the passage above, does the pronoun \"{{ span2_text }}\" refer to {{ span1_text }}?\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
373 |
+
"prompt_original_task": true,
|
374 |
+
"comment": "",
|
375 |
+
"acc_norm_stderr": 0.0474473339327792
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"task_name": "wsc",
|
379 |
+
"prompt_name": "I think they mean",
|
380 |
+
"acc": 0.36538461538461536,
|
381 |
+
"fixed_answer_choice_list": [
|
382 |
+
"No",
|
383 |
+
"Yes"
|
384 |
+
],
|
385 |
+
"dataset_path": "super_glue",
|
386 |
+
"dataset_name": "wsc.fixed",
|
387 |
+
"subset": null,
|
388 |
+
"prompt_id": "4b3e29cc-ccb8-4e4c-a845-4935ca29cf34",
|
389 |
+
"prompt_jinja": "{{ text }} I think they mean \"{{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }}\" Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
390 |
+
"prompt_original_task": true,
|
391 |
+
"comment": "",
|
392 |
+
"acc_stderr": 0.0474473339327792
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"task_name": "wsc",
|
396 |
+
"prompt_name": "I think they mean",
|
397 |
+
"acc_norm": 0.36538461538461536,
|
398 |
+
"fixed_answer_choice_list": [
|
399 |
+
"No",
|
400 |
+
"Yes"
|
401 |
+
],
|
402 |
+
"dataset_path": "super_glue",
|
403 |
+
"dataset_name": "wsc.fixed",
|
404 |
+
"subset": null,
|
405 |
+
"prompt_id": "4b3e29cc-ccb8-4e4c-a845-4935ca29cf34",
|
406 |
+
"prompt_jinja": "{{ text }} I think they mean \"{{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }}\" Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
407 |
+
"prompt_original_task": true,
|
408 |
+
"comment": "",
|
409 |
+
"acc_norm_stderr": 0.0474473339327792
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"task_name": "wsc",
|
413 |
+
"prompt_name": "Who or what is/are",
|
414 |
+
"acc": 0.40384615384615385,
|
415 |
+
"fixed_answer_choice_list": [
|
416 |
+
"No",
|
417 |
+
"Yes"
|
418 |
+
],
|
419 |
+
"dataset_path": "super_glue",
|
420 |
+
"dataset_name": "wsc.fixed",
|
421 |
+
"subset": null,
|
422 |
+
"prompt_id": "d88f3e21-42dc-49a5-924d-69b764a14816",
|
423 |
+
"prompt_jinja": "{{ text }} \n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: Who or what are \"{{ span2_text.lower() }}\"? {{ span1_text }}?\n{% else %}\nQuestion: Who or what is \"{{ span2_text.lower() }}\"? Is it {{ span1_text }}?\n{% endif %}\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
424 |
+
"prompt_original_task": true,
|
425 |
+
"comment": "",
|
426 |
+
"acc_stderr": 0.048346889526540184
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"task_name": "wsc",
|
430 |
+
"prompt_name": "Who or what is/are",
|
431 |
+
"acc_norm": 0.36538461538461536,
|
432 |
+
"fixed_answer_choice_list": [
|
433 |
+
"No",
|
434 |
+
"Yes"
|
435 |
+
],
|
436 |
+
"dataset_path": "super_glue",
|
437 |
+
"dataset_name": "wsc.fixed",
|
438 |
+
"subset": null,
|
439 |
+
"prompt_id": "d88f3e21-42dc-49a5-924d-69b764a14816",
|
440 |
+
"prompt_jinja": "{{ text }} \n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: Who or what are \"{{ span2_text.lower() }}\"? {{ span1_text }}?\n{% else %}\nQuestion: Who or what is \"{{ span2_text.lower() }}\"? Is it {{ span1_text }}?\n{% endif %}\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
441 |
+
"prompt_original_task": true,
|
442 |
+
"comment": "",
|
443 |
+
"acc_norm_stderr": 0.0474473339327792
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"task_name": "wsc",
|
447 |
+
"prompt_name": "by p they mean",
|
448 |
+
"acc": 0.36538461538461536,
|
449 |
+
"fixed_answer_choice_list": [
|
450 |
+
"No",
|
451 |
+
"Yes"
|
452 |
+
],
|
453 |
+
"dataset_path": "super_glue",
|
454 |
+
"dataset_name": "wsc.fixed",
|
455 |
+
"subset": null,
|
456 |
+
"prompt_id": "23361c5d-b67f-4c2a-9da7-16301c55d0e1",
|
457 |
+
"prompt_jinja": "{{ text }} Here, by \"{{ span2_text }}\" they mean \"{{ span1_text }}\". Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
458 |
+
"prompt_original_task": true,
|
459 |
+
"comment": "",
|
460 |
+
"acc_stderr": 0.0474473339327792
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"task_name": "wsc",
|
464 |
+
"prompt_name": "by p they mean",
|
465 |
+
"acc_norm": 0.36538461538461536,
|
466 |
+
"fixed_answer_choice_list": [
|
467 |
+
"No",
|
468 |
+
"Yes"
|
469 |
+
],
|
470 |
+
"dataset_path": "super_glue",
|
471 |
+
"dataset_name": "wsc.fixed",
|
472 |
+
"subset": null,
|
473 |
+
"prompt_id": "23361c5d-b67f-4c2a-9da7-16301c55d0e1",
|
474 |
+
"prompt_jinja": "{{ text }} Here, by \"{{ span2_text }}\" they mean \"{{ span1_text }}\". Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
475 |
+
"prompt_original_task": true,
|
476 |
+
"comment": "",
|
477 |
+
"acc_norm_stderr": 0.0474473339327792
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"task_name": "wsc",
|
481 |
+
"prompt_name": "does p stand for",
|
482 |
+
"acc": 0.375,
|
483 |
+
"fixed_answer_choice_list": [
|
484 |
+
"No",
|
485 |
+
"Yes"
|
486 |
+
],
|
487 |
+
"dataset_path": "super_glue",
|
488 |
+
"dataset_name": "wsc.fixed",
|
489 |
+
"subset": null,
|
490 |
+
"prompt_id": "7482d24f-cf45-4013-b82d-369489fc958b",
|
491 |
+
"prompt_jinja": "{{ text }} Here, does \"{{ span2_text.lower() }}\" stand for {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
492 |
+
"prompt_original_task": true,
|
493 |
+
"comment": "",
|
494 |
+
"acc_stderr": 0.04770204856076104
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"task_name": "wsc",
|
498 |
+
"prompt_name": "does p stand for",
|
499 |
+
"acc_norm": 0.36538461538461536,
|
500 |
+
"fixed_answer_choice_list": [
|
501 |
+
"No",
|
502 |
+
"Yes"
|
503 |
+
],
|
504 |
+
"dataset_path": "super_glue",
|
505 |
+
"dataset_name": "wsc.fixed",
|
506 |
+
"subset": null,
|
507 |
+
"prompt_id": "7482d24f-cf45-4013-b82d-369489fc958b",
|
508 |
+
"prompt_jinja": "{{ text }} Here, does \"{{ span2_text.lower() }}\" stand for {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
509 |
+
"prompt_original_task": true,
|
510 |
+
"comment": "",
|
511 |
+
"acc_norm_stderr": 0.0474473339327792
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"task_name": "wsc",
|
515 |
+
"prompt_name": "does the pronoun refer to",
|
516 |
+
"acc": 0.5480769230769231,
|
517 |
+
"fixed_answer_choice_list": [
|
518 |
+
"No",
|
519 |
+
"Yes"
|
520 |
+
],
|
521 |
+
"dataset_path": "super_glue",
|
522 |
+
"dataset_name": "wsc.fixed",
|
523 |
+
"subset": null,
|
524 |
+
"prompt_id": "212fb8b1-8436-4f64-8f37-a9094fe029f4",
|
525 |
+
"prompt_jinja": "{{ text }} In the previous sentence, does the pronoun \"{{ span2_text.lower() }}\" refer to {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
526 |
+
"prompt_original_task": true,
|
527 |
+
"comment": "",
|
528 |
+
"acc_stderr": 0.049038186969314335
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"task_name": "wsc",
|
532 |
+
"prompt_name": "does the pronoun refer to",
|
533 |
+
"acc_norm": 0.36538461538461536,
|
534 |
+
"fixed_answer_choice_list": [
|
535 |
+
"No",
|
536 |
+
"Yes"
|
537 |
+
],
|
538 |
+
"dataset_path": "super_glue",
|
539 |
+
"dataset_name": "wsc.fixed",
|
540 |
+
"subset": null,
|
541 |
+
"prompt_id": "212fb8b1-8436-4f64-8f37-a9094fe029f4",
|
542 |
+
"prompt_jinja": "{{ text }} In the previous sentence, does the pronoun \"{{ span2_text.lower() }}\" refer to {{ span1_text }}? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
543 |
+
"prompt_original_task": true,
|
544 |
+
"comment": "",
|
545 |
+
"acc_norm_stderr": 0.0474473339327792
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"task_name": "wsc",
|
549 |
+
"prompt_name": "in other words",
|
550 |
+
"acc": 0.36538461538461536,
|
551 |
+
"fixed_answer_choice_list": [
|
552 |
+
"False",
|
553 |
+
"True"
|
554 |
+
],
|
555 |
+
"dataset_path": "super_glue",
|
556 |
+
"dataset_name": "wsc.fixed",
|
557 |
+
"subset": null,
|
558 |
+
"prompt_id": "2f17f18b-6daa-44ef-a2dd-dddaf04aec0e",
|
559 |
+
"prompt_jinja": "{{ text }} \n\nIn other words, {{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }} True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
560 |
+
"prompt_original_task": true,
|
561 |
+
"comment": "",
|
562 |
+
"acc_stderr": 0.0474473339327792
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"task_name": "wsc",
|
566 |
+
"prompt_name": "in other words",
|
567 |
+
"acc_norm": 0.5288461538461539,
|
568 |
+
"fixed_answer_choice_list": [
|
569 |
+
"False",
|
570 |
+
"True"
|
571 |
+
],
|
572 |
+
"dataset_path": "super_glue",
|
573 |
+
"dataset_name": "wsc.fixed",
|
574 |
+
"subset": null,
|
575 |
+
"prompt_id": "2f17f18b-6daa-44ef-a2dd-dddaf04aec0e",
|
576 |
+
"prompt_jinja": "{{ text }} \n\nIn other words, {{ text.split(\" \")[span2_index:] | join(\" \") | replace(span2_text, span1_text) }} True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
577 |
+
"prompt_original_task": true,
|
578 |
+
"comment": "",
|
579 |
+
"acc_norm_stderr": 0.04918440626354964
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"task_name": "wsc",
|
583 |
+
"prompt_name": "p is/are r",
|
584 |
+
"acc": 0.36538461538461536,
|
585 |
+
"fixed_answer_choice_list": [
|
586 |
+
"False",
|
587 |
+
"True"
|
588 |
+
],
|
589 |
+
"dataset_path": "super_glue",
|
590 |
+
"dataset_name": "wsc.fixed",
|
591 |
+
"subset": null,
|
592 |
+
"prompt_id": "87f97aa0-1fa9-4f0b-b8e6-89d3c1f19bd6",
|
593 |
+
"prompt_jinja": "Context: {{ text }} \n\n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: \"{{ span2_text }}\" are {{ span1_text }}. True or false?\n{% else %}\nQuestion: \"{{ span2_text }}\" is {{ span1_text }}. True or false?\n{% endif %}\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
594 |
+
"prompt_original_task": true,
|
595 |
+
"comment": "",
|
596 |
+
"acc_stderr": 0.0474473339327792
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"task_name": "wsc",
|
600 |
+
"prompt_name": "p is/are r",
|
601 |
+
"acc_norm": 0.34615384615384615,
|
602 |
+
"fixed_answer_choice_list": [
|
603 |
+
"False",
|
604 |
+
"True"
|
605 |
+
],
|
606 |
+
"dataset_path": "super_glue",
|
607 |
+
"dataset_name": "wsc.fixed",
|
608 |
+
"subset": null,
|
609 |
+
"prompt_id": "87f97aa0-1fa9-4f0b-b8e6-89d3c1f19bd6",
|
610 |
+
"prompt_jinja": "Context: {{ text }} \n\n{% if span2_text.lower() == \"they\" or span2_text.lower() == \"them\" %}\nQuestion: \"{{ span2_text }}\" are {{ span1_text }}. True or false?\n{% else %}\nQuestion: \"{{ span2_text }}\" is {{ span1_text }}. True or false?\n{% endif %}\n\nAnswer: ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
611 |
+
"prompt_original_task": true,
|
612 |
+
"comment": "",
|
613 |
+
"acc_norm_stderr": 0.04687634642174987
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"task_name": "wsc",
|
617 |
+
"prompt_name": "replaced with",
|
618 |
+
"acc": 0.6153846153846154,
|
619 |
+
"fixed_answer_choice_list": [
|
620 |
+
"No",
|
621 |
+
"Yes"
|
622 |
+
],
|
623 |
+
"dataset_path": "super_glue",
|
624 |
+
"dataset_name": "wsc.fixed",
|
625 |
+
"subset": null,
|
626 |
+
"prompt_id": "809eacd0-2f6c-4e3a-b52a-57c783879d36",
|
627 |
+
"prompt_jinja": "{{ text }} In the previous sentence, can the pronoun \"{{ span2_text }}\" be replaced with \"{{ span1_text }}\"? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
628 |
+
"prompt_original_task": true,
|
629 |
+
"comment": "",
|
630 |
+
"acc_stderr": 0.047936688680750406
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"task_name": "wsc",
|
634 |
+
"prompt_name": "replaced with",
|
635 |
+
"acc_norm": 0.36538461538461536,
|
636 |
+
"fixed_answer_choice_list": [
|
637 |
+
"No",
|
638 |
+
"Yes"
|
639 |
+
],
|
640 |
+
"dataset_path": "super_glue",
|
641 |
+
"dataset_name": "wsc.fixed",
|
642 |
+
"subset": null,
|
643 |
+
"prompt_id": "809eacd0-2f6c-4e3a-b52a-57c783879d36",
|
644 |
+
"prompt_jinja": "{{ text }} In the previous sentence, can the pronoun \"{{ span2_text }}\" be replaced with \"{{ span1_text }}\"? Yes or no? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
645 |
+
"prompt_original_task": true,
|
646 |
+
"comment": "",
|
647 |
+
"acc_norm_stderr": 0.0474473339327792
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"task_name": "wsc",
|
651 |
+
"prompt_name": "the pronoun refers to",
|
652 |
+
"acc": 0.36538461538461536,
|
653 |
+
"fixed_answer_choice_list": [
|
654 |
+
"False",
|
655 |
+
"True"
|
656 |
+
],
|
657 |
+
"dataset_path": "super_glue",
|
658 |
+
"dataset_name": "wsc.fixed",
|
659 |
+
"subset": null,
|
660 |
+
"prompt_id": "aae24b54-c3a7-4f69-8b77-f6dc115988f8",
|
661 |
+
"prompt_jinja": "{{ text }} \nIn the passage above, the pronoun \"{{ span2_text }}\" refers to {{ span1_text }}. True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
662 |
+
"prompt_original_task": true,
|
663 |
+
"comment": "",
|
664 |
+
"acc_stderr": 0.0474473339327792
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"task_name": "wsc",
|
668 |
+
"prompt_name": "the pronoun refers to",
|
669 |
+
"acc_norm": 0.5865384615384616,
|
670 |
+
"fixed_answer_choice_list": [
|
671 |
+
"False",
|
672 |
+
"True"
|
673 |
+
],
|
674 |
+
"dataset_path": "super_glue",
|
675 |
+
"dataset_name": "wsc.fixed",
|
676 |
+
"subset": null,
|
677 |
+
"prompt_id": "aae24b54-c3a7-4f69-8b77-f6dc115988f8",
|
678 |
+
"prompt_jinja": "{{ text }} \nIn the passage above, the pronoun \"{{ span2_text }}\" refers to {{ span1_text }}. True or false? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
679 |
+
"prompt_original_task": true,
|
680 |
+
"comment": "",
|
681 |
+
"acc_norm_stderr": 0.04852294969729053
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"task_name": "wnli",
|
685 |
+
"prompt_name": "confident",
|
686 |
+
"acc": 0.43661971830985913,
|
687 |
+
"fixed_answer_choice_list": [
|
688 |
+
"not confident",
|
689 |
+
"very confident"
|
690 |
+
],
|
691 |
+
"dataset_path": "glue",
|
692 |
+
"dataset_name": "wnli",
|
693 |
+
"subset": null,
|
694 |
+
"prompt_id": "10c354ee-6f4e-4b04-91e1-29e999a8f3e7",
|
695 |
+
"prompt_jinja": "If it's true that\n{{sentence1}}\nhow {{\"confident\"}} should I be that\n{{sentence2}}\n{{\"very confident or not confident?\"}}\n|||\n{{answer_choices[label]}}",
|
696 |
+
"prompt_original_task": true,
|
697 |
+
"comment": "",
|
698 |
+
"acc_stderr": 0.0592793555841297
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"task_name": "wnli",
|
702 |
+
"prompt_name": "confident",
|
703 |
+
"acc_norm": 0.43661971830985913,
|
704 |
+
"fixed_answer_choice_list": [
|
705 |
+
"not confident",
|
706 |
+
"very confident"
|
707 |
+
],
|
708 |
+
"dataset_path": "glue",
|
709 |
+
"dataset_name": "wnli",
|
710 |
+
"subset": null,
|
711 |
+
"prompt_id": "10c354ee-6f4e-4b04-91e1-29e999a8f3e7",
|
712 |
+
"prompt_jinja": "If it's true that\n{{sentence1}}\nhow {{\"confident\"}} should I be that\n{{sentence2}}\n{{\"very confident or not confident?\"}}\n|||\n{{answer_choices[label]}}",
|
713 |
+
"prompt_original_task": true,
|
714 |
+
"comment": "",
|
715 |
+
"acc_norm_stderr": 0.0592793555841297
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"task_name": "wnli",
|
719 |
+
"prompt_name": "entailment explained",
|
720 |
+
"acc": 0.39436619718309857,
|
721 |
+
"fixed_answer_choice_list": [
|
722 |
+
"no",
|
723 |
+
"yes"
|
724 |
+
],
|
725 |
+
"dataset_path": "glue",
|
726 |
+
"dataset_name": "wnli",
|
727 |
+
"subset": null,
|
728 |
+
"prompt_id": "3a0e46cb-0b96-4972-83f6-29a6c6a09ba9",
|
729 |
+
"prompt_jinja": "{{\"Entailment\"}} means that the second sentence follows from the first sentence. Are the following two sentences an example of entailment?\n{{sentence1}}\n{{sentence2}}\n|||\n{{answer_choices[label]}}",
|
730 |
+
"prompt_original_task": true,
|
731 |
+
"comment": "",
|
732 |
+
"acc_stderr": 0.058412510854444266
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"task_name": "wnli",
|
736 |
+
"prompt_name": "entailment explained",
|
737 |
+
"acc_norm": 0.43661971830985913,
|
738 |
+
"fixed_answer_choice_list": [
|
739 |
+
"no",
|
740 |
+
"yes"
|
741 |
+
],
|
742 |
+
"dataset_path": "glue",
|
743 |
+
"dataset_name": "wnli",
|
744 |
+
"subset": null,
|
745 |
+
"prompt_id": "3a0e46cb-0b96-4972-83f6-29a6c6a09ba9",
|
746 |
+
"prompt_jinja": "{{\"Entailment\"}} means that the second sentence follows from the first sentence. Are the following two sentences an example of entailment?\n{{sentence1}}\n{{sentence2}}\n|||\n{{answer_choices[label]}}",
|
747 |
+
"prompt_original_task": true,
|
748 |
+
"comment": "",
|
749 |
+
"acc_norm_stderr": 0.0592793555841297
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"task_name": "wnli",
|
753 |
+
"prompt_name": "imply",
|
754 |
+
"acc": 0.4225352112676056,
|
755 |
+
"fixed_answer_choice_list": [
|
756 |
+
"no",
|
757 |
+
"yes"
|
758 |
+
],
|
759 |
+
"dataset_path": "glue",
|
760 |
+
"dataset_name": "wnli",
|
761 |
+
"subset": null,
|
762 |
+
"prompt_id": "a2ce492b-dfd0-4f04-bc44-70c7867ba231",
|
763 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nDoes the first sentence imply the second sentence?\n|||\n{{answer_choices[label]}}",
|
764 |
+
"prompt_original_task": true,
|
765 |
+
"comment": "",
|
766 |
+
"acc_stderr": 0.05903984205682581
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"task_name": "wnli",
|
770 |
+
"prompt_name": "imply",
|
771 |
+
"acc_norm": 0.43661971830985913,
|
772 |
+
"fixed_answer_choice_list": [
|
773 |
+
"no",
|
774 |
+
"yes"
|
775 |
+
],
|
776 |
+
"dataset_path": "glue",
|
777 |
+
"dataset_name": "wnli",
|
778 |
+
"subset": null,
|
779 |
+
"prompt_id": "a2ce492b-dfd0-4f04-bc44-70c7867ba231",
|
780 |
+
"prompt_jinja": "{{sentence1}}\n{{sentence2}}\nDoes the first sentence imply the second sentence?\n|||\n{{answer_choices[label]}}",
|
781 |
+
"prompt_original_task": true,
|
782 |
+
"comment": "",
|
783 |
+
"acc_norm_stderr": 0.0592793555841297
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"task_name": "wnli",
|
787 |
+
"prompt_name": "justified",
|
788 |
+
"acc": 0.43661971830985913,
|
789 |
+
"fixed_answer_choice_list": [
|
790 |
+
"no",
|
791 |
+
"yes"
|
792 |
+
],
|
793 |
+
"dataset_path": "glue",
|
794 |
+
"dataset_name": "wnli",
|
795 |
+
"subset": null,
|
796 |
+
"prompt_id": "a244158a-a248-4e34-bef7-66e269dd0815",
|
797 |
+
"prompt_jinja": "Someone told me \"{{sentence1}}\" Now, I think that \"{{sentence2}}\" Am I justified in thinking this?\n|||\n{{answer_choices[label]}}",
|
798 |
+
"prompt_original_task": true,
|
799 |
+
"comment": "",
|
800 |
+
"acc_stderr": 0.0592793555841297
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"task_name": "wnli",
|
804 |
+
"prompt_name": "justified",
|
805 |
+
"acc_norm": 0.43661971830985913,
|
806 |
+
"fixed_answer_choice_list": [
|
807 |
+
"no",
|
808 |
+
"yes"
|
809 |
+
],
|
810 |
+
"dataset_path": "glue",
|
811 |
+
"dataset_name": "wnli",
|
812 |
+
"subset": null,
|
813 |
+
"prompt_id": "a244158a-a248-4e34-bef7-66e269dd0815",
|
814 |
+
"prompt_jinja": "Someone told me \"{{sentence1}}\" Now, I think that \"{{sentence2}}\" Am I justified in thinking this?\n|||\n{{answer_choices[label]}}",
|
815 |
+
"prompt_original_task": true,
|
816 |
+
"comment": "",
|
817 |
+
"acc_norm_stderr": 0.0592793555841297
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"task_name": "wnli",
|
821 |
+
"prompt_name": "mean",
|
822 |
+
"acc": 0.6619718309859155,
|
823 |
+
"fixed_answer_choice_list": [
|
824 |
+
"no",
|
825 |
+
"yes"
|
826 |
+
],
|
827 |
+
"dataset_path": "glue",
|
828 |
+
"dataset_name": "wnli",
|
829 |
+
"subset": null,
|
830 |
+
"prompt_id": "75f89b05-5a81-401b-8a04-8239211a9a95",
|
831 |
+
"prompt_jinja": "Assume that the following is true:\n{{sentence1}}\nDoes this mean that \"{{sentence2}}\"?\n|||\n{{answer_choices[label]}}",
|
832 |
+
"prompt_original_task": true,
|
833 |
+
"comment": "",
|
834 |
+
"acc_stderr": 0.05653887739133513
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"task_name": "wnli",
|
838 |
+
"prompt_name": "mean",
|
839 |
+
"acc_norm": 0.43661971830985913,
|
840 |
+
"fixed_answer_choice_list": [
|
841 |
+
"no",
|
842 |
+
"yes"
|
843 |
+
],
|
844 |
+
"dataset_path": "glue",
|
845 |
+
"dataset_name": "wnli",
|
846 |
+
"subset": null,
|
847 |
+
"prompt_id": "75f89b05-5a81-401b-8a04-8239211a9a95",
|
848 |
+
"prompt_jinja": "Assume that the following is true:\n{{sentence1}}\nDoes this mean that \"{{sentence2}}\"?\n|||\n{{answer_choices[label]}}",
|
849 |
+
"prompt_original_task": true,
|
850 |
+
"comment": "",
|
851 |
+
"acc_norm_stderr": 0.0592793555841297
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"task_name": "gsarti/flores_101_afr",
|
855 |
+
"prompt_name": null,
|
856 |
+
"word_perplexity": 139324.0466654445
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"task_name": "gsarti/flores_101_afr",
|
860 |
+
"prompt_name": null,
|
861 |
+
"byte_perplexity": 7.049422805555328
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"task_name": "gsarti/flores_101_afr",
|
865 |
+
"prompt_name": null,
|
866 |
+
"bits_per_byte": 2.8175051369933213
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"task_name": "gsarti/flores_101_amh",
|
870 |
+
"prompt_name": null,
|
871 |
+
"word_perplexity": 105036774.30501972
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"task_name": "gsarti/flores_101_amh",
|
875 |
+
"prompt_name": null,
|
876 |
+
"byte_perplexity": 4.172368790188039
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"task_name": "gsarti/flores_101_amh",
|
880 |
+
"prompt_name": null,
|
881 |
+
"bits_per_byte": 2.0608666814101815
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"task_name": "gsarti/flores_101_ara",
|
885 |
+
"prompt_name": null,
|
886 |
+
"word_perplexity": 674.8640314665696
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"task_name": "gsarti/flores_101_ara",
|
890 |
+
"prompt_name": null,
|
891 |
+
"byte_perplexity": 1.8400375612633983
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"task_name": "gsarti/flores_101_ara",
|
895 |
+
"prompt_name": null,
|
896 |
+
"bits_per_byte": 0.8797352167688847
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"task_name": "gsarti/flores_101_hye",
|
900 |
+
"prompt_name": null,
|
901 |
+
"word_perplexity": 99262887.01092263
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"task_name": "gsarti/flores_101_hye",
|
905 |
+
"prompt_name": null,
|
906 |
+
"byte_perplexity": 3.7481249397064547
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"task_name": "gsarti/flores_101_hye",
|
910 |
+
"prompt_name": null,
|
911 |
+
"bits_per_byte": 1.906169044483402
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"task_name": "gsarti/flores_101_asm",
|
915 |
+
"prompt_name": null,
|
916 |
+
"word_perplexity": 6763188828222.085
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"task_name": "gsarti/flores_101_asm",
|
920 |
+
"prompt_name": null,
|
921 |
+
"byte_perplexity": 5.497254736157445
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"task_name": "gsarti/flores_101_asm",
|
925 |
+
"prompt_name": null,
|
926 |
+
"bits_per_byte": 2.458711333673663
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"task_name": "gsarti/flores_101_ast",
|
930 |
+
"prompt_name": null,
|
931 |
+
"word_perplexity": 10657.272913539553
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"task_name": "gsarti/flores_101_ast",
|
935 |
+
"prompt_name": null,
|
936 |
+
"byte_perplexity": 4.260251728273795
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"task_name": "gsarti/flores_101_ast",
|
940 |
+
"prompt_name": null,
|
941 |
+
"bits_per_byte": 2.0909386784329675
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"task_name": "gsarti/flores_101_azj",
|
945 |
+
"prompt_name": null,
|
946 |
+
"word_perplexity": 45923924.18878753
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"task_name": "gsarti/flores_101_azj",
|
950 |
+
"prompt_name": null,
|
951 |
+
"byte_perplexity": 7.691396328945705
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"task_name": "gsarti/flores_101_azj",
|
955 |
+
"prompt_name": null,
|
956 |
+
"bits_per_byte": 2.9432455349850195
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"task_name": "gsarti/flores_101_bel",
|
960 |
+
"prompt_name": null,
|
961 |
+
"word_perplexity": 23935692.781315073
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"task_name": "gsarti/flores_101_bel",
|
965 |
+
"prompt_name": null,
|
966 |
+
"byte_perplexity": 3.7706591215465943
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"task_name": "gsarti/flores_101_bel",
|
970 |
+
"prompt_name": null,
|
971 |
+
"bits_per_byte": 1.914816732584341
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"task_name": "gsarti/flores_101_ben",
|
975 |
+
"prompt_name": null,
|
976 |
+
"word_perplexity": 2480418685142.412
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"task_name": "gsarti/flores_101_ben",
|
980 |
+
"prompt_name": null,
|
981 |
+
"byte_perplexity": 5.074281765515423
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"task_name": "gsarti/flores_101_ben",
|
985 |
+
"prompt_name": null,
|
986 |
+
"bits_per_byte": 2.3432036318231058
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"task_name": "gsarti/flores_101_bos",
|
990 |
+
"prompt_name": null,
|
991 |
+
"word_perplexity": 229622.13691086147
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"task_name": "gsarti/flores_101_bos",
|
995 |
+
"prompt_name": null,
|
996 |
+
"byte_perplexity": 6.343363734045183
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"task_name": "gsarti/flores_101_bos",
|
1000 |
+
"prompt_name": null,
|
1001 |
+
"bits_per_byte": 2.665248069942796
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"task_name": "gsarti/flores_101_bul",
|
1005 |
+
"prompt_name": null,
|
1006 |
+
"word_perplexity": 194851.13344620814
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"task_name": "gsarti/flores_101_bul",
|
1010 |
+
"prompt_name": null,
|
1011 |
+
"byte_perplexity": 2.8553687444403257
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"task_name": "gsarti/flores_101_bul",
|
1015 |
+
"prompt_name": null,
|
1016 |
+
"bits_per_byte": 1.5136770683283687
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"task_name": "gsarti/flores_101_mya",
|
1020 |
+
"prompt_name": null,
|
1021 |
+
"word_perplexity": 5.887577237013639e+18
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"task_name": "gsarti/flores_101_mya",
|
1025 |
+
"prompt_name": null,
|
1026 |
+
"byte_perplexity": 2.657561458464019
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"task_name": "gsarti/flores_101_mya",
|
1030 |
+
"prompt_name": null,
|
1031 |
+
"bits_per_byte": 1.4101030557435918
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"task_name": "gsarti/flores_101_cat",
|
1035 |
+
"prompt_name": null,
|
1036 |
+
"word_perplexity": 179.13123174533087
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"task_name": "gsarti/flores_101_cat",
|
1040 |
+
"prompt_name": null,
|
1041 |
+
"byte_perplexity": 2.358207169698056
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"task_name": "gsarti/flores_101_cat",
|
1045 |
+
"prompt_name": null,
|
1046 |
+
"bits_per_byte": 1.2376904653775254
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"task_name": "gsarti/flores_101_ceb",
|
1050 |
+
"prompt_name": null,
|
1051 |
+
"word_perplexity": 113330.67154113152
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"task_name": "gsarti/flores_101_ceb",
|
1055 |
+
"prompt_name": null,
|
1056 |
+
"byte_perplexity": 6.896481056329736
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"task_name": "gsarti/flores_101_ceb",
|
1060 |
+
"prompt_name": null,
|
1061 |
+
"bits_per_byte": 2.7858604115174295
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"task_name": "gsarti/flores_101_zho_simpl",
|
1065 |
+
"prompt_name": null,
|
1066 |
+
"word_perplexity": 1.0554528210220222e+21
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"task_name": "gsarti/flores_101_zho_simpl",
|
1070 |
+
"prompt_name": null,
|
1071 |
+
"byte_perplexity": 2.322457417595381
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"task_name": "gsarti/flores_101_zho_simpl",
|
1075 |
+
"prompt_name": null,
|
1076 |
+
"bits_per_byte": 1.2156521449449949
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"task_name": "gsarti/flores_101_zho_trad",
|
1080 |
+
"prompt_name": null,
|
1081 |
+
"word_perplexity": 4.787781515987923e+24
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"task_name": "gsarti/flores_101_zho_trad",
|
1085 |
+
"prompt_name": null,
|
1086 |
+
"byte_perplexity": 2.5709177552415134
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"task_name": "gsarti/flores_101_zho_trad",
|
1090 |
+
"prompt_name": null,
|
1091 |
+
"bits_per_byte": 1.3622834584784203
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"task_name": "gsarti/flores_101_hrv",
|
1095 |
+
"prompt_name": null,
|
1096 |
+
"word_perplexity": 307789.1462790266
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"task_name": "gsarti/flores_101_hrv",
|
1100 |
+
"prompt_name": null,
|
1101 |
+
"byte_perplexity": 6.50559790827845
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"task_name": "gsarti/flores_101_hrv",
|
1105 |
+
"prompt_name": null,
|
1106 |
+
"bits_per_byte": 2.7016816564307984
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"task_name": "gsarti/flores_101_ces",
|
1110 |
+
"prompt_name": null,
|
1111 |
+
"word_perplexity": 625101.1441414964
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"task_name": "gsarti/flores_101_ces",
|
1115 |
+
"prompt_name": null,
|
1116 |
+
"byte_perplexity": 6.126526835715164
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"task_name": "gsarti/flores_101_ces",
|
1120 |
+
"prompt_name": null,
|
1121 |
+
"bits_per_byte": 2.6150694333085327
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"task_name": "gsarti/flores_101_dan",
|
1125 |
+
"prompt_name": null,
|
1126 |
+
"word_perplexity": 71695.50336412797
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"task_name": "gsarti/flores_101_dan",
|
1130 |
+
"prompt_name": null,
|
1131 |
+
"byte_perplexity": 5.778786323448377
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"task_name": "gsarti/flores_101_dan",
|
1135 |
+
"prompt_name": null,
|
1136 |
+
"bits_per_byte": 2.5307665257708245
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"task_name": "gsarti/flores_101_nld",
|
1140 |
+
"prompt_name": null,
|
1141 |
+
"word_perplexity": 13951.877058430618
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"task_name": "gsarti/flores_101_nld",
|
1145 |
+
"prompt_name": null,
|
1146 |
+
"byte_perplexity": 4.535651709856251
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"task_name": "gsarti/flores_101_nld",
|
1150 |
+
"prompt_name": null,
|
1151 |
+
"bits_per_byte": 2.1813098607926804
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"task_name": "gsarti/flores_101_eng",
|
1155 |
+
"prompt_name": null,
|
1156 |
+
"word_perplexity": 75.56480997823662
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"task_name": "gsarti/flores_101_eng",
|
1160 |
+
"prompt_name": null,
|
1161 |
+
"byte_perplexity": 2.061283234268159
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"task_name": "gsarti/flores_101_eng",
|
1165 |
+
"prompt_name": null,
|
1166 |
+
"bits_per_byte": 1.0435427545613876
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"task_name": "gsarti/flores_101_est",
|
1170 |
+
"prompt_name": null,
|
1171 |
+
"word_perplexity": 92602633.82439691
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"task_name": "gsarti/flores_101_est",
|
1175 |
+
"prompt_name": null,
|
1176 |
+
"byte_perplexity": 10.131736127467489
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"task_name": "gsarti/flores_101_est",
|
1180 |
+
"prompt_name": null,
|
1181 |
+
"bits_per_byte": 3.340809503762674
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"task_name": "gsarti/flores_101_tgl",
|
1185 |
+
"prompt_name": null,
|
1186 |
+
"word_perplexity": 87554.31770184237
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"task_name": "gsarti/flores_101_tgl",
|
1190 |
+
"prompt_name": null,
|
1191 |
+
"byte_perplexity": 6.256957969905079
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"task_name": "gsarti/flores_101_tgl",
|
1195 |
+
"prompt_name": null,
|
1196 |
+
"bits_per_byte": 2.645461413001105
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"task_name": "gsarti/flores_101_fin",
|
1200 |
+
"prompt_name": null,
|
1201 |
+
"word_perplexity": 91621886.60145952
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"task_name": "gsarti/flores_101_fin",
|
1205 |
+
"prompt_name": null,
|
1206 |
+
"byte_perplexity": 7.5129644427067355
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"task_name": "gsarti/flores_101_fin",
|
1210 |
+
"prompt_name": null,
|
1211 |
+
"bits_per_byte": 2.9093822743068216
|
1212 |
+
},
|
1213 |
+
{
|
1214 |
+
"task_name": "gsarti/flores_101_fra",
|
1215 |
+
"prompt_name": null,
|
1216 |
+
"word_perplexity": 89.45884576931464
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"task_name": "gsarti/flores_101_fra",
|
1220 |
+
"prompt_name": null,
|
1221 |
+
"byte_perplexity": 2.0177390037335385
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"task_name": "gsarti/flores_101_fra",
|
1225 |
+
"prompt_name": null,
|
1226 |
+
"bits_per_byte": 1.0127395726746855
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"task_name": "gsarti/flores_101_ful",
|
1230 |
+
"prompt_name": null,
|
1231 |
+
"word_perplexity": 908715.1423017589
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"task_name": "gsarti/flores_101_ful",
|
1235 |
+
"prompt_name": null,
|
1236 |
+
"byte_perplexity": 11.810263420287875
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"task_name": "gsarti/flores_101_ful",
|
1240 |
+
"prompt_name": null,
|
1241 |
+
"bits_per_byte": 3.561969238361191
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"task_name": "gsarti/flores_101_glg",
|
1245 |
+
"prompt_name": null,
|
1246 |
+
"word_perplexity": 1537.3193913761668
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"task_name": "gsarti/flores_101_glg",
|
1250 |
+
"prompt_name": null,
|
1251 |
+
"byte_perplexity": 3.2214647330840154
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"task_name": "gsarti/flores_101_glg",
|
1255 |
+
"prompt_name": null,
|
1256 |
+
"bits_per_byte": 1.6877168009728167
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"task_name": "gsarti/flores_101_lug",
|
1260 |
+
"prompt_name": null,
|
1261 |
+
"word_perplexity": 32046806.791237485
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"task_name": "gsarti/flores_101_lug",
|
1265 |
+
"prompt_name": null,
|
1266 |
+
"byte_perplexity": 9.285708185212261
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"task_name": "gsarti/flores_101_lug",
|
1270 |
+
"prompt_name": null,
|
1271 |
+
"bits_per_byte": 3.2150119431528754
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"task_name": "gsarti/flores_101_kat",
|
1275 |
+
"prompt_name": null,
|
1276 |
+
"word_perplexity": 1133105340.614723
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"task_name": "gsarti/flores_101_kat",
|
1280 |
+
"prompt_name": null,
|
1281 |
+
"byte_perplexity": 2.5184571084900518
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"task_name": "gsarti/flores_101_kat",
|
1285 |
+
"prompt_name": null,
|
1286 |
+
"bits_per_byte": 1.3325401608568794
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"task_name": "gsarti/flores_101_deu",
|
1290 |
+
"prompt_name": null,
|
1291 |
+
"word_perplexity": 5647.282599404732
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"task_name": "gsarti/flores_101_deu",
|
1295 |
+
"prompt_name": null,
|
1296 |
+
"byte_perplexity": 3.361758059911202
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"task_name": "gsarti/flores_101_deu",
|
1300 |
+
"prompt_name": null,
|
1301 |
+
"bits_per_byte": 1.7492158999678582
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"task_name": "gsarti/flores_101_ell",
|
1305 |
+
"prompt_name": null,
|
1306 |
+
"word_perplexity": 102751.5248402687
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"task_name": "gsarti/flores_101_ell",
|
1310 |
+
"prompt_name": null,
|
1311 |
+
"byte_perplexity": 2.6139607239932805
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"task_name": "gsarti/flores_101_ell",
|
1315 |
+
"prompt_name": null,
|
1316 |
+
"bits_per_byte": 1.3862374641150543
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"task_name": "gsarti/flores_101_guj",
|
1320 |
+
"prompt_name": null,
|
1321 |
+
"word_perplexity": 133216198508.6925
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"task_name": "gsarti/flores_101_guj",
|
1325 |
+
"prompt_name": null,
|
1326 |
+
"byte_perplexity": 5.125904532570054
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"task_name": "gsarti/flores_101_guj",
|
1330 |
+
"prompt_name": null,
|
1331 |
+
"bits_per_byte": 2.357806609400009
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"task_name": "gsarti/flores_101_hau",
|
1335 |
+
"prompt_name": null,
|
1336 |
+
"word_perplexity": 730749.6449046461
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"task_name": "gsarti/flores_101_hau",
|
1340 |
+
"prompt_name": null,
|
1341 |
+
"byte_perplexity": 11.049458818357667
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"task_name": "gsarti/flores_101_hau",
|
1345 |
+
"prompt_name": null,
|
1346 |
+
"bits_per_byte": 3.4659038057537184
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"task_name": "gsarti/flores_101_heb",
|
1350 |
+
"prompt_name": null,
|
1351 |
+
"word_perplexity": 880255.4148832298
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"task_name": "gsarti/flores_101_heb",
|
1355 |
+
"prompt_name": null,
|
1356 |
+
"byte_perplexity": 3.7036842387723694
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"task_name": "gsarti/flores_101_heb",
|
1360 |
+
"prompt_name": null,
|
1361 |
+
"bits_per_byte": 1.8889611054621571
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"task_name": "gsarti/flores_101_hin",
|
1365 |
+
"prompt_name": null,
|
1366 |
+
"word_perplexity": 453226793.5348556
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"task_name": "gsarti/flores_101_hin",
|
1370 |
+
"prompt_name": null,
|
1371 |
+
"byte_perplexity": 4.581311639568996
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"task_name": "gsarti/flores_101_hin",
|
1375 |
+
"prompt_name": null,
|
1376 |
+
"bits_per_byte": 2.195760704215568
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"task_name": "gsarti/flores_101_hun",
|
1380 |
+
"prompt_name": null,
|
1381 |
+
"word_perplexity": 8545882.19823639
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"task_name": "gsarti/flores_101_hun",
|
1385 |
+
"prompt_name": null,
|
1386 |
+
"byte_perplexity": 7.19531655942431
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"task_name": "gsarti/flores_101_hun",
|
1390 |
+
"prompt_name": null,
|
1391 |
+
"bits_per_byte": 2.8470581600253615
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"task_name": "gsarti/flores_101_isl",
|
1395 |
+
"prompt_name": null,
|
1396 |
+
"word_perplexity": 3947458.536983725
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"task_name": "gsarti/flores_101_isl",
|
1400 |
+
"prompt_name": null,
|
1401 |
+
"byte_perplexity": 8.812045732299993
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"task_name": "gsarti/flores_101_isl",
|
1405 |
+
"prompt_name": null,
|
1406 |
+
"bits_per_byte": 3.1394769822824644
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"task_name": "gsarti/flores_101_ibo",
|
1410 |
+
"prompt_name": null,
|
1411 |
+
"word_perplexity": 99576.38125028457
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"task_name": "gsarti/flores_101_ibo",
|
1415 |
+
"prompt_name": null,
|
1416 |
+
"byte_perplexity": 6.06807351892086
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"task_name": "gsarti/flores_101_ibo",
|
1420 |
+
"prompt_name": null,
|
1421 |
+
"bits_per_byte": 2.6012385649422316
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"task_name": "gsarti/flores_101_ind",
|
1425 |
+
"prompt_name": null,
|
1426 |
+
"word_perplexity": 299.41864562936706
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"task_name": "gsarti/flores_101_ind",
|
1430 |
+
"prompt_name": null,
|
1431 |
+
"byte_perplexity": 2.2193428661828962
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"task_name": "gsarti/flores_101_ind",
|
1435 |
+
"prompt_name": null,
|
1436 |
+
"bits_per_byte": 1.1501325666473412
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"task_name": "gsarti/flores_101_gle",
|
1440 |
+
"prompt_name": null,
|
1441 |
+
"word_perplexity": 1548851.5929806433
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"task_name": "gsarti/flores_101_gle",
|
1445 |
+
"prompt_name": null,
|
1446 |
+
"byte_perplexity": 9.712259930753122
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"task_name": "gsarti/flores_101_gle",
|
1450 |
+
"prompt_name": null,
|
1451 |
+
"bits_per_byte": 3.2798070331865063
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"task_name": "gsarti/flores_101_ita",
|
1455 |
+
"prompt_name": null,
|
1456 |
+
"word_perplexity": 1951.0663459405935
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"task_name": "gsarti/flores_101_ita",
|
1460 |
+
"prompt_name": null,
|
1461 |
+
"byte_perplexity": 3.238337491305615
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"task_name": "gsarti/flores_101_ita",
|
1465 |
+
"prompt_name": null,
|
1466 |
+
"bits_per_byte": 1.695253347487448
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"task_name": "gsarti/flores_101_jpn",
|
1470 |
+
"prompt_name": null,
|
1471 |
+
"word_perplexity": 6.0024027118732196e+69
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"task_name": "gsarti/flores_101_jpn",
|
1475 |
+
"prompt_name": null,
|
1476 |
+
"byte_perplexity": 2.907038023970581
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"task_name": "gsarti/flores_101_jpn",
|
1480 |
+
"prompt_name": null,
|
1481 |
+
"bits_per_byte": 1.539549942005635
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"task_name": "gsarti/flores_101_jav",
|
1485 |
+
"prompt_name": null,
|
1486 |
+
"word_perplexity": 956961.3940329206
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"task_name": "gsarti/flores_101_jav",
|
1490 |
+
"prompt_name": null,
|
1491 |
+
"byte_perplexity": 7.460632752007581
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"task_name": "gsarti/flores_101_jav",
|
1495 |
+
"prompt_name": null,
|
1496 |
+
"bits_per_byte": 2.899297993680408
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"task_name": "gsarti/flores_101_kea",
|
1500 |
+
"prompt_name": null,
|
1501 |
+
"word_perplexity": 438558.0012817139
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"task_name": "gsarti/flores_101_kea",
|
1505 |
+
"prompt_name": null,
|
1506 |
+
"byte_perplexity": 9.281572608888562
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"task_name": "gsarti/flores_101_kea",
|
1510 |
+
"prompt_name": null,
|
1511 |
+
"bits_per_byte": 3.2143692668645976
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"task_name": "gsarti/flores_101_kam",
|
1515 |
+
"prompt_name": null,
|
1516 |
+
"word_perplexity": 4288601.196402131
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"task_name": "gsarti/flores_101_kam",
|
1520 |
+
"prompt_name": null,
|
1521 |
+
"byte_perplexity": 11.436917146974627
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"task_name": "gsarti/flores_101_kam",
|
1525 |
+
"prompt_name": null,
|
1526 |
+
"bits_per_byte": 3.515626316920499
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"task_name": "gsarti/flores_101_kan",
|
1530 |
+
"prompt_name": null,
|
1531 |
+
"word_perplexity": 5.3861539364992216e+16
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"task_name": "gsarti/flores_101_kan",
|
1535 |
+
"prompt_name": null,
|
1536 |
+
"byte_perplexity": 5.274956219477929
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"task_name": "gsarti/flores_101_kan",
|
1540 |
+
"prompt_name": null,
|
1541 |
+
"bits_per_byte": 2.3991591199422513
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"task_name": "gsarti/flores_101_kaz",
|
1545 |
+
"prompt_name": null,
|
1546 |
+
"word_perplexity": 89537342.10068764
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"task_name": "gsarti/flores_101_kaz",
|
1550 |
+
"prompt_name": null,
|
1551 |
+
"byte_perplexity": 3.5945005448756477
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"task_name": "gsarti/flores_101_kaz",
|
1555 |
+
"prompt_name": null,
|
1556 |
+
"bits_per_byte": 1.845791322405974
|
1557 |
+
}
|
1558 |
+
],
|
1559 |
+
"versions": {
|
1560 |
+
"wic+GPT-3-prompt": 0,
|
1561 |
+
"wic+GPT-3-prompt-with-label": 0,
|
1562 |
+
"wic+affirmation_true_or_false": 0,
|
1563 |
+
"wic+grammar_homework": 0,
|
1564 |
+
"wic+polysemous": 0,
|
1565 |
+
"wic+question-context": 0,
|
1566 |
+
"wic+question-context-meaning": 0,
|
1567 |
+
"wic+question-context-meaning-with-label": 0,
|
1568 |
+
"wic+same_sense": 0,
|
1569 |
+
"wic+similar-sense": 0,
|
1570 |
+
"wsc+GPT-3 Style": 0,
|
1571 |
+
"wsc+I think they mean": 0,
|
1572 |
+
"wsc+Who or what is/are": 0,
|
1573 |
+
"wsc+by p they mean": 0,
|
1574 |
+
"wsc+does p stand for": 0,
|
1575 |
+
"wsc+does the pronoun refer to": 0,
|
1576 |
+
"wsc+in other words": 0,
|
1577 |
+
"wsc+p is/are r": 0,
|
1578 |
+
"wsc+replaced with": 0,
|
1579 |
+
"wsc+the pronoun refers to": 0,
|
1580 |
+
"wnli+confident": 1,
|
1581 |
+
"wnli+entailment explained": 1,
|
1582 |
+
"wnli+imply": 1,
|
1583 |
+
"wnli+justified": 1,
|
1584 |
+
"wnli+mean": 1,
|
1585 |
+
"gsarti/flores_101_afr+null": 0,
|
1586 |
+
"gsarti/flores_101_amh+null": 0,
|
1587 |
+
"gsarti/flores_101_ara+null": 0,
|
1588 |
+
"gsarti/flores_101_hye+null": 0,
|
1589 |
+
"gsarti/flores_101_asm+null": 0,
|
1590 |
+
"gsarti/flores_101_ast+null": 0,
|
1591 |
+
"gsarti/flores_101_azj+null": 0,
|
1592 |
+
"gsarti/flores_101_bel+null": 0,
|
1593 |
+
"gsarti/flores_101_ben+null": 0,
|
1594 |
+
"gsarti/flores_101_bos+null": 0,
|
1595 |
+
"gsarti/flores_101_bul+null": 0,
|
1596 |
+
"gsarti/flores_101_mya+null": 0,
|
1597 |
+
"gsarti/flores_101_cat+null": 0,
|
1598 |
+
"gsarti/flores_101_ceb+null": 0,
|
1599 |
+
"gsarti/flores_101_zho_simpl+null": 0,
|
1600 |
+
"gsarti/flores_101_zho_trad+null": 0,
|
1601 |
+
"gsarti/flores_101_hrv+null": 0,
|
1602 |
+
"gsarti/flores_101_ces+null": 0,
|
1603 |
+
"gsarti/flores_101_dan+null": 0,
|
1604 |
+
"gsarti/flores_101_nld+null": 0,
|
1605 |
+
"gsarti/flores_101_eng+null": 0,
|
1606 |
+
"gsarti/flores_101_est+null": 0,
|
1607 |
+
"gsarti/flores_101_tgl+null": 0,
|
1608 |
+
"gsarti/flores_101_fin+null": 0,
|
1609 |
+
"gsarti/flores_101_fra+null": 0,
|
1610 |
+
"gsarti/flores_101_ful+null": 0,
|
1611 |
+
"gsarti/flores_101_glg+null": 0,
|
1612 |
+
"gsarti/flores_101_lug+null": 0,
|
1613 |
+
"gsarti/flores_101_kat+null": 0,
|
1614 |
+
"gsarti/flores_101_deu+null": 0,
|
1615 |
+
"gsarti/flores_101_ell+null": 0,
|
1616 |
+
"gsarti/flores_101_guj+null": 0,
|
1617 |
+
"gsarti/flores_101_hau+null": 0,
|
1618 |
+
"gsarti/flores_101_heb+null": 0,
|
1619 |
+
"gsarti/flores_101_hin+null": 0,
|
1620 |
+
"gsarti/flores_101_hun+null": 0,
|
1621 |
+
"gsarti/flores_101_isl+null": 0,
|
1622 |
+
"gsarti/flores_101_ibo+null": 0,
|
1623 |
+
"gsarti/flores_101_ind+null": 0,
|
1624 |
+
"gsarti/flores_101_gle+null": 0,
|
1625 |
+
"gsarti/flores_101_ita+null": 0,
|
1626 |
+
"gsarti/flores_101_jpn+null": 0,
|
1627 |
+
"gsarti/flores_101_jav+null": 0,
|
1628 |
+
"gsarti/flores_101_kea+null": 0,
|
1629 |
+
"gsarti/flores_101_kam+null": 0,
|
1630 |
+
"gsarti/flores_101_kan+null": 0,
|
1631 |
+
"gsarti/flores_101_kaz+null": 0
|
1632 |
+
},
|
1633 |
+
"table_results": {
|
1634 |
+
"wic+GPT-3-prompt": {
|
1635 |
+
"task_name": "wic",
|
1636 |
+
"prompt_name": "GPT-3-prompt",
|
1637 |
+
"acc": 0.5,
|
1638 |
+
"acc_stderr": 0.01981072129375818,
|
1639 |
+
"acc_norm": 0.5,
|
1640 |
+
"acc_norm_stderr": 0.01981072129375818
|
1641 |
+
},
|
1642 |
+
"wic+GPT-3-prompt-with-label": {
|
1643 |
+
"task_name": "wic",
|
1644 |
+
"prompt_name": "GPT-3-prompt-with-label",
|
1645 |
+
"acc": 0.49216300940438873,
|
1646 |
+
"acc_stderr": 0.019808287657813832,
|
1647 |
+
"acc_norm": 0.5,
|
1648 |
+
"acc_norm_stderr": 0.01981072129375818
|
1649 |
+
},
|
1650 |
+
"wic+affirmation_true_or_false": {
|
1651 |
+
"task_name": "wic",
|
1652 |
+
"prompt_name": "affirmation_true_or_false",
|
1653 |
+
"acc": 0.5,
|
1654 |
+
"acc_stderr": 0.01981072129375818,
|
1655 |
+
"acc_norm": 0.5078369905956113,
|
1656 |
+
"acc_norm_stderr": 0.019808287657813832
|
1657 |
+
},
|
1658 |
+
"wic+grammar_homework": {
|
1659 |
+
"task_name": "wic",
|
1660 |
+
"prompt_name": "grammar_homework",
|
1661 |
+
"acc": 0.5094043887147336,
|
1662 |
+
"acc_stderr": 0.019807216763271497,
|
1663 |
+
"acc_norm": 0.49843260188087773,
|
1664 |
+
"acc_norm_stderr": 0.019810623954060382
|
1665 |
+
},
|
1666 |
+
"wic+polysemous": {
|
1667 |
+
"task_name": "wic",
|
1668 |
+
"prompt_name": "polysemous",
|
1669 |
+
"acc": 0.512539184952978,
|
1670 |
+
"acc_stderr": 0.019804490588592596,
|
1671 |
+
"acc_norm": 0.49843260188087773,
|
1672 |
+
"acc_norm_stderr": 0.019810623954060382
|
1673 |
+
},
|
1674 |
+
"wic+question-context": {
|
1675 |
+
"task_name": "wic",
|
1676 |
+
"prompt_name": "question-context",
|
1677 |
+
"acc": 0.5266457680250783,
|
1678 |
+
"acc_stderr": 0.019782570188812167,
|
1679 |
+
"acc_norm": 0.5031347962382445,
|
1680 |
+
"acc_norm_stderr": 0.019810331932097542
|
1681 |
+
},
|
1682 |
+
"wic+question-context-meaning": {
|
1683 |
+
"task_name": "wic",
|
1684 |
+
"prompt_name": "question-context-meaning",
|
1685 |
+
"acc": 0.5438871473354232,
|
1686 |
+
"acc_stderr": 0.019734259601993404,
|
1687 |
+
"acc_norm": 0.5015673981191222,
|
1688 |
+
"acc_norm_stderr": 0.019810623954060382
|
1689 |
+
},
|
1690 |
+
"wic+question-context-meaning-with-label": {
|
1691 |
+
"task_name": "wic",
|
1692 |
+
"prompt_name": "question-context-meaning-with-label",
|
1693 |
+
"acc": 0.5156739811912225,
|
1694 |
+
"acc_stderr": 0.019800984955347847,
|
1695 |
+
"acc_norm": 0.5015673981191222,
|
1696 |
+
"acc_norm_stderr": 0.019810623954060382
|
1697 |
+
},
|
1698 |
+
"wic+same_sense": {
|
1699 |
+
"task_name": "wic",
|
1700 |
+
"prompt_name": "same_sense",
|
1701 |
+
"acc": 0.5047021943573667,
|
1702 |
+
"acc_stderr": 0.019809845219259763,
|
1703 |
+
"acc_norm": 0.5,
|
1704 |
+
"acc_norm_stderr": 0.01981072129375818
|
1705 |
+
},
|
1706 |
+
"wic+similar-sense": {
|
1707 |
+
"task_name": "wic",
|
1708 |
+
"prompt_name": "similar-sense",
|
1709 |
+
"acc": 0.542319749216301,
|
1710 |
+
"acc_stderr": 0.01973963328373276,
|
1711 |
+
"acc_norm": 0.5,
|
1712 |
+
"acc_norm_stderr": 0.01981072129375818
|
1713 |
+
},
|
1714 |
+
"wsc+GPT-3 Style": {
|
1715 |
+
"task_name": "wsc",
|
1716 |
+
"prompt_name": "GPT-3 Style",
|
1717 |
+
"acc": 0.36538461538461536,
|
1718 |
+
"acc_stderr": 0.0474473339327792,
|
1719 |
+
"acc_norm": 0.36538461538461536,
|
1720 |
+
"acc_norm_stderr": 0.0474473339327792
|
1721 |
+
},
|
1722 |
+
"wsc+I think they mean": {
|
1723 |
+
"task_name": "wsc",
|
1724 |
+
"prompt_name": "I think they mean",
|
1725 |
+
"acc": 0.36538461538461536,
|
1726 |
+
"acc_stderr": 0.0474473339327792,
|
1727 |
+
"acc_norm": 0.36538461538461536,
|
1728 |
+
"acc_norm_stderr": 0.0474473339327792
|
1729 |
+
},
|
1730 |
+
"wsc+Who or what is/are": {
|
1731 |
+
"task_name": "wsc",
|
1732 |
+
"prompt_name": "Who or what is/are",
|
1733 |
+
"acc": 0.40384615384615385,
|
1734 |
+
"acc_stderr": 0.048346889526540184,
|
1735 |
+
"acc_norm": 0.36538461538461536,
|
1736 |
+
"acc_norm_stderr": 0.0474473339327792
|
1737 |
+
},
|
1738 |
+
"wsc+by p they mean": {
|
1739 |
+
"task_name": "wsc",
|
1740 |
+
"prompt_name": "by p they mean",
|
1741 |
+
"acc": 0.36538461538461536,
|
1742 |
+
"acc_stderr": 0.0474473339327792,
|
1743 |
+
"acc_norm": 0.36538461538461536,
|
1744 |
+
"acc_norm_stderr": 0.0474473339327792
|
1745 |
+
},
|
1746 |
+
"wsc+does p stand for": {
|
1747 |
+
"task_name": "wsc",
|
1748 |
+
"prompt_name": "does p stand for",
|
1749 |
+
"acc": 0.375,
|
1750 |
+
"acc_stderr": 0.04770204856076104,
|
1751 |
+
"acc_norm": 0.36538461538461536,
|
1752 |
+
"acc_norm_stderr": 0.0474473339327792
|
1753 |
+
},
|
1754 |
+
"wsc+does the pronoun refer to": {
|
1755 |
+
"task_name": "wsc",
|
1756 |
+
"prompt_name": "does the pronoun refer to",
|
1757 |
+
"acc": 0.5480769230769231,
|
1758 |
+
"acc_stderr": 0.049038186969314335,
|
1759 |
+
"acc_norm": 0.36538461538461536,
|
1760 |
+
"acc_norm_stderr": 0.0474473339327792
|
1761 |
+
},
|
1762 |
+
"wsc+in other words": {
|
1763 |
+
"task_name": "wsc",
|
1764 |
+
"prompt_name": "in other words",
|
1765 |
+
"acc": 0.36538461538461536,
|
1766 |
+
"acc_stderr": 0.0474473339327792,
|
1767 |
+
"acc_norm": 0.5288461538461539,
|
1768 |
+
"acc_norm_stderr": 0.04918440626354964
|
1769 |
+
},
|
1770 |
+
"wsc+p is/are r": {
|
1771 |
+
"task_name": "wsc",
|
1772 |
+
"prompt_name": "p is/are r",
|
1773 |
+
"acc": 0.36538461538461536,
|
1774 |
+
"acc_stderr": 0.0474473339327792,
|
1775 |
+
"acc_norm": 0.34615384615384615,
|
1776 |
+
"acc_norm_stderr": 0.04687634642174987
|
1777 |
+
},
|
1778 |
+
"wsc+replaced with": {
|
1779 |
+
"task_name": "wsc",
|
1780 |
+
"prompt_name": "replaced with",
|
1781 |
+
"acc": 0.6153846153846154,
|
1782 |
+
"acc_stderr": 0.047936688680750406,
|
1783 |
+
"acc_norm": 0.36538461538461536,
|
1784 |
+
"acc_norm_stderr": 0.0474473339327792
|
1785 |
+
},
|
1786 |
+
"wsc+the pronoun refers to": {
|
1787 |
+
"task_name": "wsc",
|
1788 |
+
"prompt_name": "the pronoun refers to",
|
1789 |
+
"acc": 0.36538461538461536,
|
1790 |
+
"acc_stderr": 0.0474473339327792,
|
1791 |
+
"acc_norm": 0.5865384615384616,
|
1792 |
+
"acc_norm_stderr": 0.04852294969729053
|
1793 |
+
},
|
1794 |
+
"wnli+confident": {
|
1795 |
+
"task_name": "wnli",
|
1796 |
+
"prompt_name": "confident",
|
1797 |
+
"acc": 0.43661971830985913,
|
1798 |
+
"acc_stderr": 0.0592793555841297,
|
1799 |
+
"acc_norm": 0.43661971830985913,
|
1800 |
+
"acc_norm_stderr": 0.0592793555841297
|
1801 |
+
},
|
1802 |
+
"wnli+entailment explained": {
|
1803 |
+
"task_name": "wnli",
|
1804 |
+
"prompt_name": "entailment explained",
|
1805 |
+
"acc": 0.39436619718309857,
|
1806 |
+
"acc_stderr": 0.058412510854444266,
|
1807 |
+
"acc_norm": 0.43661971830985913,
|
1808 |
+
"acc_norm_stderr": 0.0592793555841297
|
1809 |
+
},
|
1810 |
+
"wnli+imply": {
|
1811 |
+
"task_name": "wnli",
|
1812 |
+
"prompt_name": "imply",
|
1813 |
+
"acc": 0.4225352112676056,
|
1814 |
+
"acc_stderr": 0.05903984205682581,
|
1815 |
+
"acc_norm": 0.43661971830985913,
|
1816 |
+
"acc_norm_stderr": 0.0592793555841297
|
1817 |
+
},
|
1818 |
+
"wnli+justified": {
|
1819 |
+
"task_name": "wnli",
|
1820 |
+
"prompt_name": "justified",
|
1821 |
+
"acc": 0.43661971830985913,
|
1822 |
+
"acc_stderr": 0.0592793555841297,
|
1823 |
+
"acc_norm": 0.43661971830985913,
|
1824 |
+
"acc_norm_stderr": 0.0592793555841297
|
1825 |
+
},
|
1826 |
+
"wnli+mean": {
|
1827 |
+
"task_name": "wnli",
|
1828 |
+
"prompt_name": "mean",
|
1829 |
+
"acc": 0.6619718309859155,
|
1830 |
+
"acc_stderr": 0.05653887739133513,
|
1831 |
+
"acc_norm": 0.43661971830985913,
|
1832 |
+
"acc_norm_stderr": 0.0592793555841297
|
1833 |
+
},
|
1834 |
+
"gsarti/flores_101_afr+null": {
|
1835 |
+
"task_name": "gsarti/flores_101_afr",
|
1836 |
+
"prompt_name": "null",
|
1837 |
+
"word_perplexity": 139324.0466654445,
|
1838 |
+
"byte_perplexity": 7.049422805555328,
|
1839 |
+
"bits_per_byte": 2.8175051369933213
|
1840 |
+
},
|
1841 |
+
"gsarti/flores_101_amh+null": {
|
1842 |
+
"task_name": "gsarti/flores_101_amh",
|
1843 |
+
"prompt_name": "null",
|
1844 |
+
"word_perplexity": 105036774.30501972,
|
1845 |
+
"byte_perplexity": 4.172368790188039,
|
1846 |
+
"bits_per_byte": 2.0608666814101815
|
1847 |
+
},
|
1848 |
+
"gsarti/flores_101_ara+null": {
|
1849 |
+
"task_name": "gsarti/flores_101_ara",
|
1850 |
+
"prompt_name": "null",
|
1851 |
+
"word_perplexity": 674.8640314665696,
|
1852 |
+
"byte_perplexity": 1.8400375612633983,
|
1853 |
+
"bits_per_byte": 0.8797352167688847
|
1854 |
+
},
|
1855 |
+
"gsarti/flores_101_hye+null": {
|
1856 |
+
"task_name": "gsarti/flores_101_hye",
|
1857 |
+
"prompt_name": "null",
|
1858 |
+
"word_perplexity": 99262887.01092263,
|
1859 |
+
"byte_perplexity": 3.7481249397064547,
|
1860 |
+
"bits_per_byte": 1.906169044483402
|
1861 |
+
},
|
1862 |
+
"gsarti/flores_101_asm+null": {
|
1863 |
+
"task_name": "gsarti/flores_101_asm",
|
1864 |
+
"prompt_name": "null",
|
1865 |
+
"word_perplexity": 6763188828222.085,
|
1866 |
+
"byte_perplexity": 5.497254736157445,
|
1867 |
+
"bits_per_byte": 2.458711333673663
|
1868 |
+
},
|
1869 |
+
"gsarti/flores_101_ast+null": {
|
1870 |
+
"task_name": "gsarti/flores_101_ast",
|
1871 |
+
"prompt_name": "null",
|
1872 |
+
"word_perplexity": 10657.272913539553,
|
1873 |
+
"byte_perplexity": 4.260251728273795,
|
1874 |
+
"bits_per_byte": 2.0909386784329675
|
1875 |
+
},
|
1876 |
+
"gsarti/flores_101_azj+null": {
|
1877 |
+
"task_name": "gsarti/flores_101_azj",
|
1878 |
+
"prompt_name": "null",
|
1879 |
+
"word_perplexity": 45923924.18878753,
|
1880 |
+
"byte_perplexity": 7.691396328945705,
|
1881 |
+
"bits_per_byte": 2.9432455349850195
|
1882 |
+
},
|
1883 |
+
"gsarti/flores_101_bel+null": {
|
1884 |
+
"task_name": "gsarti/flores_101_bel",
|
1885 |
+
"prompt_name": "null",
|
1886 |
+
"word_perplexity": 23935692.781315073,
|
1887 |
+
"byte_perplexity": 3.7706591215465943,
|
1888 |
+
"bits_per_byte": 1.914816732584341
|
1889 |
+
},
|
1890 |
+
"gsarti/flores_101_ben+null": {
|
1891 |
+
"task_name": "gsarti/flores_101_ben",
|
1892 |
+
"prompt_name": "null",
|
1893 |
+
"word_perplexity": 2480418685142.412,
|
1894 |
+
"byte_perplexity": 5.074281765515423,
|
1895 |
+
"bits_per_byte": 2.3432036318231058
|
1896 |
+
},
|
1897 |
+
"gsarti/flores_101_bos+null": {
|
1898 |
+
"task_name": "gsarti/flores_101_bos",
|
1899 |
+
"prompt_name": "null",
|
1900 |
+
"word_perplexity": 229622.13691086147,
|
1901 |
+
"byte_perplexity": 6.343363734045183,
|
1902 |
+
"bits_per_byte": 2.665248069942796
|
1903 |
+
},
|
1904 |
+
"gsarti/flores_101_bul+null": {
|
1905 |
+
"task_name": "gsarti/flores_101_bul",
|
1906 |
+
"prompt_name": "null",
|
1907 |
+
"word_perplexity": 194851.13344620814,
|
1908 |
+
"byte_perplexity": 2.8553687444403257,
|
1909 |
+
"bits_per_byte": 1.5136770683283687
|
1910 |
+
},
|
1911 |
+
"gsarti/flores_101_mya+null": {
|
1912 |
+
"task_name": "gsarti/flores_101_mya",
|
1913 |
+
"prompt_name": "null",
|
1914 |
+
"word_perplexity": 5.887577237013639e+18,
|
1915 |
+
"byte_perplexity": 2.657561458464019,
|
1916 |
+
"bits_per_byte": 1.4101030557435918
|
1917 |
+
},
|
1918 |
+
"gsarti/flores_101_cat+null": {
|
1919 |
+
"task_name": "gsarti/flores_101_cat",
|
1920 |
+
"prompt_name": "null",
|
1921 |
+
"word_perplexity": 179.13123174533087,
|
1922 |
+
"byte_perplexity": 2.358207169698056,
|
1923 |
+
"bits_per_byte": 1.2376904653775254
|
1924 |
+
},
|
1925 |
+
"gsarti/flores_101_ceb+null": {
|
1926 |
+
"task_name": "gsarti/flores_101_ceb",
|
1927 |
+
"prompt_name": "null",
|
1928 |
+
"word_perplexity": 113330.67154113152,
|
1929 |
+
"byte_perplexity": 6.896481056329736,
|
1930 |
+
"bits_per_byte": 2.7858604115174295
|
1931 |
+
},
|
1932 |
+
"gsarti/flores_101_zho_simpl+null": {
|
1933 |
+
"task_name": "gsarti/flores_101_zho_simpl",
|
1934 |
+
"prompt_name": "null",
|
1935 |
+
"word_perplexity": 1.0554528210220222e+21,
|
1936 |
+
"byte_perplexity": 2.322457417595381,
|
1937 |
+
"bits_per_byte": 1.2156521449449949
|
1938 |
+
},
|
1939 |
+
"gsarti/flores_101_zho_trad+null": {
|
1940 |
+
"task_name": "gsarti/flores_101_zho_trad",
|
1941 |
+
"prompt_name": "null",
|
1942 |
+
"word_perplexity": 4.787781515987923e+24,
|
1943 |
+
"byte_perplexity": 2.5709177552415134,
|
1944 |
+
"bits_per_byte": 1.3622834584784203
|
1945 |
+
},
|
1946 |
+
"gsarti/flores_101_hrv+null": {
|
1947 |
+
"task_name": "gsarti/flores_101_hrv",
|
1948 |
+
"prompt_name": "null",
|
1949 |
+
"word_perplexity": 307789.1462790266,
|
1950 |
+
"byte_perplexity": 6.50559790827845,
|
1951 |
+
"bits_per_byte": 2.7016816564307984
|
1952 |
+
},
|
1953 |
+
"gsarti/flores_101_ces+null": {
|
1954 |
+
"task_name": "gsarti/flores_101_ces",
|
1955 |
+
"prompt_name": "null",
|
1956 |
+
"word_perplexity": 625101.1441414964,
|
1957 |
+
"byte_perplexity": 6.126526835715164,
|
1958 |
+
"bits_per_byte": 2.6150694333085327
|
1959 |
+
},
|
1960 |
+
"gsarti/flores_101_dan+null": {
|
1961 |
+
"task_name": "gsarti/flores_101_dan",
|
1962 |
+
"prompt_name": "null",
|
1963 |
+
"word_perplexity": 71695.50336412797,
|
1964 |
+
"byte_perplexity": 5.778786323448377,
|
1965 |
+
"bits_per_byte": 2.5307665257708245
|
1966 |
+
},
|
1967 |
+
"gsarti/flores_101_nld+null": {
|
1968 |
+
"task_name": "gsarti/flores_101_nld",
|
1969 |
+
"prompt_name": "null",
|
1970 |
+
"word_perplexity": 13951.877058430618,
|
1971 |
+
"byte_perplexity": 4.535651709856251,
|
1972 |
+
"bits_per_byte": 2.1813098607926804
|
1973 |
+
},
|
1974 |
+
"gsarti/flores_101_eng+null": {
|
1975 |
+
"task_name": "gsarti/flores_101_eng",
|
1976 |
+
"prompt_name": "null",
|
1977 |
+
"word_perplexity": 75.56480997823662,
|
1978 |
+
"byte_perplexity": 2.061283234268159,
|
1979 |
+
"bits_per_byte": 1.0435427545613876
|
1980 |
+
},
|
1981 |
+
"gsarti/flores_101_est+null": {
|
1982 |
+
"task_name": "gsarti/flores_101_est",
|
1983 |
+
"prompt_name": "null",
|
1984 |
+
"word_perplexity": 92602633.82439691,
|
1985 |
+
"byte_perplexity": 10.131736127467489,
|
1986 |
+
"bits_per_byte": 3.340809503762674
|
1987 |
+
},
|
1988 |
+
"gsarti/flores_101_tgl+null": {
|
1989 |
+
"task_name": "gsarti/flores_101_tgl",
|
1990 |
+
"prompt_name": "null",
|
1991 |
+
"word_perplexity": 87554.31770184237,
|
1992 |
+
"byte_perplexity": 6.256957969905079,
|
1993 |
+
"bits_per_byte": 2.645461413001105
|
1994 |
+
},
|
1995 |
+
"gsarti/flores_101_fin+null": {
|
1996 |
+
"task_name": "gsarti/flores_101_fin",
|
1997 |
+
"prompt_name": "null",
|
1998 |
+
"word_perplexity": 91621886.60145952,
|
1999 |
+
"byte_perplexity": 7.5129644427067355,
|
2000 |
+
"bits_per_byte": 2.9093822743068216
|
2001 |
+
},
|
2002 |
+
"gsarti/flores_101_fra+null": {
|
2003 |
+
"task_name": "gsarti/flores_101_fra",
|
2004 |
+
"prompt_name": "null",
|
2005 |
+
"word_perplexity": 89.45884576931464,
|
2006 |
+
"byte_perplexity": 2.0177390037335385,
|
2007 |
+
"bits_per_byte": 1.0127395726746855
|
2008 |
+
},
|
2009 |
+
"gsarti/flores_101_ful+null": {
|
2010 |
+
"task_name": "gsarti/flores_101_ful",
|
2011 |
+
"prompt_name": "null",
|
2012 |
+
"word_perplexity": 908715.1423017589,
|
2013 |
+
"byte_perplexity": 11.810263420287875,
|
2014 |
+
"bits_per_byte": 3.561969238361191
|
2015 |
+
},
|
2016 |
+
"gsarti/flores_101_glg+null": {
|
2017 |
+
"task_name": "gsarti/flores_101_glg",
|
2018 |
+
"prompt_name": "null",
|
2019 |
+
"word_perplexity": 1537.3193913761668,
|
2020 |
+
"byte_perplexity": 3.2214647330840154,
|
2021 |
+
"bits_per_byte": 1.6877168009728167
|
2022 |
+
},
|
2023 |
+
"gsarti/flores_101_lug+null": {
|
2024 |
+
"task_name": "gsarti/flores_101_lug",
|
2025 |
+
"prompt_name": "null",
|
2026 |
+
"word_perplexity": 32046806.791237485,
|
2027 |
+
"byte_perplexity": 9.285708185212261,
|
2028 |
+
"bits_per_byte": 3.2150119431528754
|
2029 |
+
},
|
2030 |
+
"gsarti/flores_101_kat+null": {
|
2031 |
+
"task_name": "gsarti/flores_101_kat",
|
2032 |
+
"prompt_name": "null",
|
2033 |
+
"word_perplexity": 1133105340.614723,
|
2034 |
+
"byte_perplexity": 2.5184571084900518,
|
2035 |
+
"bits_per_byte": 1.3325401608568794
|
2036 |
+
},
|
2037 |
+
"gsarti/flores_101_deu+null": {
|
2038 |
+
"task_name": "gsarti/flores_101_deu",
|
2039 |
+
"prompt_name": "null",
|
2040 |
+
"word_perplexity": 5647.282599404732,
|
2041 |
+
"byte_perplexity": 3.361758059911202,
|
2042 |
+
"bits_per_byte": 1.7492158999678582
|
2043 |
+
},
|
2044 |
+
"gsarti/flores_101_ell+null": {
|
2045 |
+
"task_name": "gsarti/flores_101_ell",
|
2046 |
+
"prompt_name": "null",
|
2047 |
+
"word_perplexity": 102751.5248402687,
|
2048 |
+
"byte_perplexity": 2.6139607239932805,
|
2049 |
+
"bits_per_byte": 1.3862374641150543
|
2050 |
+
},
|
2051 |
+
"gsarti/flores_101_guj+null": {
|
2052 |
+
"task_name": "gsarti/flores_101_guj",
|
2053 |
+
"prompt_name": "null",
|
2054 |
+
"word_perplexity": 133216198508.6925,
|
2055 |
+
"byte_perplexity": 5.125904532570054,
|
2056 |
+
"bits_per_byte": 2.357806609400009
|
2057 |
+
},
|
2058 |
+
"gsarti/flores_101_hau+null": {
|
2059 |
+
"task_name": "gsarti/flores_101_hau",
|
2060 |
+
"prompt_name": "null",
|
2061 |
+
"word_perplexity": 730749.6449046461,
|
2062 |
+
"byte_perplexity": 11.049458818357667,
|
2063 |
+
"bits_per_byte": 3.4659038057537184
|
2064 |
+
},
|
2065 |
+
"gsarti/flores_101_heb+null": {
|
2066 |
+
"task_name": "gsarti/flores_101_heb",
|
2067 |
+
"prompt_name": "null",
|
2068 |
+
"word_perplexity": 880255.4148832298,
|
2069 |
+
"byte_perplexity": 3.7036842387723694,
|
2070 |
+
"bits_per_byte": 1.8889611054621571
|
2071 |
+
},
|
2072 |
+
"gsarti/flores_101_hin+null": {
|
2073 |
+
"task_name": "gsarti/flores_101_hin",
|
2074 |
+
"prompt_name": "null",
|
2075 |
+
"word_perplexity": 453226793.5348556,
|
2076 |
+
"byte_perplexity": 4.581311639568996,
|
2077 |
+
"bits_per_byte": 2.195760704215568
|
2078 |
+
},
|
2079 |
+
"gsarti/flores_101_hun+null": {
|
2080 |
+
"task_name": "gsarti/flores_101_hun",
|
2081 |
+
"prompt_name": "null",
|
2082 |
+
"word_perplexity": 8545882.19823639,
|
2083 |
+
"byte_perplexity": 7.19531655942431,
|
2084 |
+
"bits_per_byte": 2.8470581600253615
|
2085 |
+
},
|
2086 |
+
"gsarti/flores_101_isl+null": {
|
2087 |
+
"task_name": "gsarti/flores_101_isl",
|
2088 |
+
"prompt_name": "null",
|
2089 |
+
"word_perplexity": 3947458.536983725,
|
2090 |
+
"byte_perplexity": 8.812045732299993,
|
2091 |
+
"bits_per_byte": 3.1394769822824644
|
2092 |
+
},
|
2093 |
+
"gsarti/flores_101_ibo+null": {
|
2094 |
+
"task_name": "gsarti/flores_101_ibo",
|
2095 |
+
"prompt_name": "null",
|
2096 |
+
"word_perplexity": 99576.38125028457,
|
2097 |
+
"byte_perplexity": 6.06807351892086,
|
2098 |
+
"bits_per_byte": 2.6012385649422316
|
2099 |
+
},
|
2100 |
+
"gsarti/flores_101_ind+null": {
|
2101 |
+
"task_name": "gsarti/flores_101_ind",
|
2102 |
+
"prompt_name": "null",
|
2103 |
+
"word_perplexity": 299.41864562936706,
|
2104 |
+
"byte_perplexity": 2.2193428661828962,
|
2105 |
+
"bits_per_byte": 1.1501325666473412
|
2106 |
+
},
|
2107 |
+
"gsarti/flores_101_gle+null": {
|
2108 |
+
"task_name": "gsarti/flores_101_gle",
|
2109 |
+
"prompt_name": "null",
|
2110 |
+
"word_perplexity": 1548851.5929806433,
|
2111 |
+
"byte_perplexity": 9.712259930753122,
|
2112 |
+
"bits_per_byte": 3.2798070331865063
|
2113 |
+
},
|
2114 |
+
"gsarti/flores_101_ita+null": {
|
2115 |
+
"task_name": "gsarti/flores_101_ita",
|
2116 |
+
"prompt_name": "null",
|
2117 |
+
"word_perplexity": 1951.0663459405935,
|
2118 |
+
"byte_perplexity": 3.238337491305615,
|
2119 |
+
"bits_per_byte": 1.695253347487448
|
2120 |
+
},
|
2121 |
+
"gsarti/flores_101_jpn+null": {
|
2122 |
+
"task_name": "gsarti/flores_101_jpn",
|
2123 |
+
"prompt_name": "null",
|
2124 |
+
"word_perplexity": 6.0024027118732196e+69,
|
2125 |
+
"byte_perplexity": 2.907038023970581,
|
2126 |
+
"bits_per_byte": 1.539549942005635
|
2127 |
+
},
|
2128 |
+
"gsarti/flores_101_jav+null": {
|
2129 |
+
"task_name": "gsarti/flores_101_jav",
|
2130 |
+
"prompt_name": "null",
|
2131 |
+
"word_perplexity": 956961.3940329206,
|
2132 |
+
"byte_perplexity": 7.460632752007581,
|
2133 |
+
"bits_per_byte": 2.899297993680408
|
2134 |
+
},
|
2135 |
+
"gsarti/flores_101_kea+null": {
|
2136 |
+
"task_name": "gsarti/flores_101_kea",
|
2137 |
+
"prompt_name": "null",
|
2138 |
+
"word_perplexity": 438558.0012817139,
|
2139 |
+
"byte_perplexity": 9.281572608888562,
|
2140 |
+
"bits_per_byte": 3.2143692668645976
|
2141 |
+
},
|
2142 |
+
"gsarti/flores_101_kam+null": {
|
2143 |
+
"task_name": "gsarti/flores_101_kam",
|
2144 |
+
"prompt_name": "null",
|
2145 |
+
"word_perplexity": 4288601.196402131,
|
2146 |
+
"byte_perplexity": 11.436917146974627,
|
2147 |
+
"bits_per_byte": 3.515626316920499
|
2148 |
+
},
|
2149 |
+
"gsarti/flores_101_kan+null": {
|
2150 |
+
"task_name": "gsarti/flores_101_kan",
|
2151 |
+
"prompt_name": "null",
|
2152 |
+
"word_perplexity": 5.3861539364992216e+16,
|
2153 |
+
"byte_perplexity": 5.274956219477929,
|
2154 |
+
"bits_per_byte": 2.3991591199422513
|
2155 |
+
},
|
2156 |
+
"gsarti/flores_101_kaz+null": {
|
2157 |
+
"task_name": "gsarti/flores_101_kaz",
|
2158 |
+
"prompt_name": "null",
|
2159 |
+
"word_perplexity": 89537342.10068764,
|
2160 |
+
"byte_perplexity": 3.5945005448756477,
|
2161 |
+
"bits_per_byte": 1.845791322405974
|
2162 |
+
}
|
2163 |
+
},
|
2164 |
+
"config": {
|
2165 |
+
"adaptive_seq_len": true,
|
2166 |
+
"num_fewshot": 0,
|
2167 |
+
"bootstrap_iters": 100000
|
2168 |
+
}
|
2169 |
+
}
|
bigscience/evaluation/results/tr11/conversion/json_to_markdown.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Table example:
|
3 |
+
|
4 |
+
| Task | Language | Metric | BLOOM-176B | OPT-176B |
|
5 |
+
|:--------|:-----------------|:------------------------|-------------:|------------:|
|
6 |
+
| arc_challenge | eng | acc | 0.4112627986348123 | 0.4121160409556314 |
|
7 |
+
|
8 |
+
|
9 |
+
Metadata example:
|
10 |
+
|
11 |
+
model-index:
|
12 |
+
- name: bart-large-cnn-samsum
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: summarization
|
16 |
+
name: Summarization
|
17 |
+
dataset:
|
18 |
+
name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization'
|
19 |
+
type: samsum
|
20 |
+
metrics:
|
21 |
+
- name: Validation ROGUE-1
|
22 |
+
type: rogue-1
|
23 |
+
value: 42.621
|
24 |
+
- name: Validation ROGUE-2
|
25 |
+
type: rogue-2
|
26 |
+
value: 21.9825
|
27 |
+
- name: Validation ROGUE-L
|
28 |
+
type: rogue-l
|
29 |
+
value: 33.034
|
30 |
+
- name: Test ROGUE-1
|
31 |
+
type: rogue-1
|
32 |
+
value: 41.3174
|
33 |
+
- name: Test ROGUE-2
|
34 |
+
type: rogue-2
|
35 |
+
value: 20.8716
|
36 |
+
- name: Test ROGUE-L
|
37 |
+
type: rogue-l
|
38 |
+
value: 32.1337
|
39 |
+
- task:
|
40 |
+
type: summarization
|
41 |
+
name: Summarization
|
42 |
+
dataset:
|
43 |
+
name: samsum
|
44 |
+
type: samsum
|
45 |
+
config: samsum
|
46 |
+
split: test
|
47 |
+
metrics:
|
48 |
+
- name: ROUGE-1
|
49 |
+
type: rouge
|
50 |
+
value: 41.3282
|
51 |
+
verified: true
|
52 |
+
- name: ROUGE-2
|
53 |
+
type: rouge
|
54 |
+
value: 20.8755
|
55 |
+
verified: true
|
56 |
+
- name: ROUGE-L
|
57 |
+
type: rouge
|
58 |
+
value: 32.1353
|
59 |
+
verified: true
|
60 |
+
- name: ROUGE-LSUM
|
61 |
+
type: rouge
|
62 |
+
value: 38.401
|
63 |
+
verified: true
|
64 |
+
- name: loss
|
65 |
+
type: loss
|
66 |
+
value: 1.4297215938568115
|
67 |
+
verified: true
|
68 |
+
- name: gen_len
|
69 |
+
type: gen_len
|
70 |
+
value: 60.0757
|
71 |
+
verified: true
|
72 |
+
"""
|
73 |
+
|
74 |
+
import json
|
75 |
+
import statistics
|
76 |
+
|
77 |
+
FILE_NAMES = ["bslmeval", "humaneval_temp02", "humaneval_temp06", "humaneval_temp08"]
|
78 |
+
|
79 |
+
# Optionally subselect tasks
|
80 |
+
SELECTED_LIST = [
|
81 |
+
"winogrande"
|
82 |
+
]
|
83 |
+
|
84 |
+
with open("bloom2b5/bslmeval.json", "r") as f:
|
85 |
+
bloom_bslmeval = json.load(f)
|
86 |
+
|
87 |
+
with open("opt/bslmeval.json", "r") as f:
|
88 |
+
opt_bslmeval = json.load(f)
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
results_formatted = {}
|
93 |
+
for task_name in bloom_bslmeval["results"]:
|
94 |
+
#if task_name not in SELECTED_LIST:
|
95 |
+
# continue
|
96 |
+
date_keys = list(bloom_bslmeval["results"][task_name].keys())
|
97 |
+
assert len(date_keys) == 1
|
98 |
+
metrics = bloom_bslmeval["results"][task_name][date_keys[0]]
|
99 |
+
|
100 |
+
lang = "eng"
|
101 |
+
if "gsarti/flores_101_" in task_name:
|
102 |
+
lang = task_name.replace("gsarti/flores_101_", "").replace("+null", "")
|
103 |
+
elif "lambada_mt_de" in task_name:
|
104 |
+
lang = "deu"
|
105 |
+
elif "lambada_mt_en" in task_name:
|
106 |
+
lang = "eng"
|
107 |
+
elif "lambada_mt_es" in task_name:
|
108 |
+
lang = "esp"
|
109 |
+
elif "lambada_mt_it" in task_name:
|
110 |
+
lang = "ita"
|
111 |
+
elif "lambada" == task_name:
|
112 |
+
continue
|
113 |
+
elif "crows_pairs_french" in task_name:
|
114 |
+
lang = "fra"
|
115 |
+
elif "headqa" == task_name:
|
116 |
+
lang = "esp"
|
117 |
+
|
118 |
+
if "acc" in metrics:
|
119 |
+
main_metric_name = "acc ↑"
|
120 |
+
elif "byte_perplexity" in metrics:
|
121 |
+
main_metric_name = "byte_perplexity ↓"
|
122 |
+
elif "pass@100" in metrics:
|
123 |
+
main_metric_name = "pass@100 ↑"
|
124 |
+
elif "em" in metrics:
|
125 |
+
main_metric_name = "em ↑"
|
126 |
+
|
127 |
+
date_keys_opt = list(opt_bslmeval["results"][task_name].keys())
|
128 |
+
score_opt = opt_bslmeval["results"][task_name][date_keys_opt[0]][main_metric_name[:-2]]
|
129 |
+
|
130 |
+
fin_task_name = metrics.get("task_name", task_name)
|
131 |
+
|
132 |
+
results_formatted.setdefault(fin_task_name, {})
|
133 |
+
results_formatted[fin_task_name].setdefault("prompts", [])
|
134 |
+
results_formatted[fin_task_name].setdefault("all_metrics", [])
|
135 |
+
results_formatted[fin_task_name].setdefault("main_metrics", [])
|
136 |
+
|
137 |
+
if "prompt_name" in metrics:
|
138 |
+
results_formatted[fin_task_name]["prompts"].append(metrics["prompt_name"])
|
139 |
+
results_formatted[fin_task_name]["name"] = fin_task_name
|
140 |
+
results_formatted[fin_task_name]["lang"] = lang
|
141 |
+
results_formatted[fin_task_name]["all_metrics"].append(metrics) # [{name: score}]
|
142 |
+
results_formatted[fin_task_name]["main_metrics"].append((main_metric_name, metrics[main_metric_name[:-2]], score_opt))
|
143 |
+
results_formatted[fin_task_name]["type"] = "text-generation"
|
144 |
+
|
145 |
+
# Take Median of scores
|
146 |
+
for k, v in results_formatted.items():
|
147 |
+
if "prompts" in v and len(v["prompts"]) > 1:
|
148 |
+
assert len(v["all_metrics"]) == len(v["main_metrics"])
|
149 |
+
num_scores = len(v["main_metrics"])
|
150 |
+
|
151 |
+
bloom_median = statistics.median([triplet[1] for triplet in v["main_metrics"]])
|
152 |
+
opt_median = statistics.median([triplet[2] for triplet in v["main_metrics"]])
|
153 |
+
|
154 |
+
results_formatted[k]["main_metrics"] = [(
|
155 |
+
v["main_metrics"][0][0],
|
156 |
+
bloom_median,
|
157 |
+
opt_median,
|
158 |
+
)]
|
159 |
+
|
160 |
+
results_formatted[k]["name"] = results_formatted[k]["name"] + f" (Median of {num_scores} prompts)"
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
def keep_best_score(new_eval, old_eval):
|
165 |
+
for k, v in new_eval.items():
|
166 |
+
old_eval[k] = max(old_eval[k], v)
|
167 |
+
return old_eval
|
168 |
+
|
169 |
+
for i, temp in enumerate(["02", "06", "08"]):
|
170 |
+
with open(f"bloom/humaneval_temp{temp}.json", "r") as f:
|
171 |
+
if i > 0:
|
172 |
+
keep_best_score(json.load(f), bloom_humaneval)
|
173 |
+
else:
|
174 |
+
bloom_humaneval = json.load(f)
|
175 |
+
with open(f"opt/humaneval_temp{temp}.json", "r") as f:
|
176 |
+
if i > 0:
|
177 |
+
keep_best_score(json.load(f), opt_humaneval)
|
178 |
+
else:
|
179 |
+
opt_humaneval = json.load(f)
|
180 |
+
|
181 |
+
results_formatted["humaneval"] = {
|
182 |
+
"name": "humaneval",
|
183 |
+
"lang": "python",
|
184 |
+
"all_metrics": [bloom_humaneval], # [{name: score}]
|
185 |
+
"main_metrics": [(f"{name} ↑", score, opt_humaneval[name]) for name, score in bloom_humaneval.items()],
|
186 |
+
"type": "text-generation"
|
187 |
+
}
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
# Add multilingual average
|
192 |
+
for k, v in results_formatted.items():
|
193 |
+
if "prompts" in v and len(v["prompts"]) > 1 and len(v["main_metrics"]) > 1:
|
194 |
+
assert len(v["all_metrics"]) == len(v["main_metrics"]), f"{k}, {len(v['all_metrics'])}, {len(v['main_metrics'])}"
|
195 |
+
num_scores = len(v["main_metrics"])
|
196 |
+
|
197 |
+
bloom_median = statistics.median([triplet[1] for triplet in v["main_metrics"]])
|
198 |
+
opt_median = statistics.median([triplet[2] for triplet in v["main_metrics"]])
|
199 |
+
|
200 |
+
results_formatted[k]["main_metrics"] = [(
|
201 |
+
v["main_metrics"][0][0],
|
202 |
+
bloom_median,
|
203 |
+
opt_median,
|
204 |
+
)]
|
205 |
+
|
206 |
+
results_formatted[k]["name"] = results_formatted[k]["name"] + f" (Median of {num_scores} prompts)"
|
207 |
+
|
208 |
+
"""Optional aggregated statistics
|
209 |
+
bloom_mean = statistics.mean([triplet[1] for k,v in results_formatted.items() for triplet in v["main_metrics"] if v["lang"] == "eng"])
|
210 |
+
opt_mean = statistics.mean([triplet[2] for k,v in results_formatted.items() for triplet in v["main_metrics"] if v["lang"] == "eng"])
|
211 |
+
|
212 |
+
results_formatted["mean_eng"] = {
|
213 |
+
"name": "mean_eng ↑",
|
214 |
+
"lang": "eng",
|
215 |
+
"all_metrics": [{"mean": bloom_mean}], # [{name: score}]
|
216 |
+
"main_metrics": [("mean", bloom_mean, opt_mean)],
|
217 |
+
"type": "text-generation"
|
218 |
+
}
|
219 |
+
|
220 |
+
bloom_mean = statistics.mean([triplet[1] for k,v in results_formatted.items() for triplet in v["main_metrics"] if "flores" in k])
|
221 |
+
opt_mean = statistics.mean([triplet[2] for k,v in results_formatted.items() for triplet in v["main_metrics"] if "flores" in k])
|
222 |
+
|
223 |
+
results_formatted["mean_multilingual"] = {
|
224 |
+
"name": "mean_multilingual (Flores) ↓",
|
225 |
+
"lang": "mul",
|
226 |
+
"all_metrics": [{"mean": bloom_mean}], # [{name: score}]
|
227 |
+
"main_metrics": [("mean", bloom_mean, opt_mean)],
|
228 |
+
"type": "text-generation"
|
229 |
+
}
|
230 |
+
|
231 |
+
main_metrics = ([triplet for k,v in results_formatted.items() for triplet in v["main_metrics"]])
|
232 |
+
|
233 |
+
bloom_best_on, opt_best_on = 0,0
|
234 |
+
for (name, bloom, opt) in main_metrics:
|
235 |
+
if name[:-2] in ["acc", "em"] or "pass" in name:
|
236 |
+
if bloom > opt:
|
237 |
+
bloom_best_on += 1
|
238 |
+
elif bloom < opt:
|
239 |
+
opt_best_on += 1
|
240 |
+
elif name[:-2] in ["byte_perplexity"]:
|
241 |
+
if bloom < opt:
|
242 |
+
bloom_best_on += 1
|
243 |
+
elif bloom > opt:
|
244 |
+
opt_best_on += 1
|
245 |
+
"""
|
246 |
+
### Markdown Table ###
|
247 |
+
|
248 |
+
HEADER = "| Task | Language | Metric | BLOOM-350M | BLOOM-750M | BLOOM-1B3 | BLOOM-2B5 | BLOOM-6B3 | BLOOM-176B |"
|
249 |
+
SEP = "|:----|:----|:----|:----:|"
|
250 |
+
ONE_LINE = "| {} | {} | {} | {} |"
|
251 |
+
|
252 |
+
TABLE_STRING = "\n".join([HEADER, SEP])
|
253 |
+
|
254 |
+
for task_name, res_dict in results_formatted.items():
|
255 |
+
for (name, score, score_opt) in res_dict["main_metrics"]:
|
256 |
+
TABLE_STRING += "\n" + ONE_LINE.format(
|
257 |
+
res_dict["name"],
|
258 |
+
res_dict["lang"],
|
259 |
+
name,
|
260 |
+
round(score, 3),
|
261 |
+
round(score_opt, 3),
|
262 |
+
)
|
263 |
+
|
264 |
+
with open("./mdtable.txt", "w") as f:
|
265 |
+
f.write(TABLE_STRING)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
### Metadata ###
|
270 |
+
|
271 |
+
HEADER = "model-index:"
|
272 |
+
MODEL = "- name: bloom"
|
273 |
+
RES = " results:"
|
274 |
+
|
275 |
+
META_STRING = "\n".join([HEADER, MODEL, RES])
|
276 |
+
|
277 |
+
ONE_TASK = " - task:\n type: {}\n name: {}\n dataset:\n name: {}\n type: {}\n metrics:"
|
278 |
+
ONE_METRIC = " - name: {}\n type: {}\n value: {}\n verified: false"
|
279 |
+
|
280 |
+
for task_name, res_dict in results_formatted.items():
|
281 |
+
META_STRING += "\n" + ONE_TASK.format(
|
282 |
+
res_dict["type"],
|
283 |
+
res_dict["type"].replace("-", " "),
|
284 |
+
task_name,
|
285 |
+
task_name,
|
286 |
+
)
|
287 |
+
for (name, score, score_opt) in res_dict["main_metrics"]:
|
288 |
+
META_STRING += "\n" + ONE_METRIC.format(
|
289 |
+
name.split(" ")[0],
|
290 |
+
name.split(" ")[0],
|
291 |
+
score
|
292 |
+
)
|
293 |
+
"""
|
294 |
+
for metrics in res_dict["all_metrics"]:
|
295 |
+
for metric_name, metric in metrics.items():
|
296 |
+
if isinstance(metric, str):
|
297 |
+
continue
|
298 |
+
META_STRING += "\n" + ONE_METRIC.format(
|
299 |
+
metric_name,
|
300 |
+
metric_name,
|
301 |
+
metric
|
302 |
+
)
|
303 |
+
"""
|
304 |
+
|
305 |
+
|
306 |
+
with open("./mdmeta.txt", "w") as f:
|
307 |
+
f.write(META_STRING)
|
bigscience/evaluation/results/tr11/opt/bslmeval.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bigscience/evaluation/results/tr11/opt/humaneval_temp02.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.0, "pass@10": 0.0, "pass@100": 0.0}
|
bigscience/evaluation/results/tr11/opt/humaneval_temp06.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 3.0487804878048808e-05, "pass@10": 0.0003048780487804881, "pass@100": 0.003048780487804878}
|
bigscience/evaluation/results/tr11/opt/humaneval_temp08.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.0, "pass@10": 0.0, "pass@100": 0.0}
|
bigscience/evaluation/results/tr11/scripts/download_bsevalharness.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Downloads the specified taks in the evaluation harness
|
2 |
+
# This is particularly useful when running in environments where the GPU nodes
|
3 |
+
# do not have internet access. This way we can pre-download them and use the cached data-set during evaluation.
|
4 |
+
|
5 |
+
from lm_eval import tasks
|
6 |
+
from lm_eval.tasks import ALL_TASKS
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
|
10 |
+
|
11 |
+
parser = argparse.ArgumentParser(description='Download evaluation harness', allow_abbrev=False)
|
12 |
+
parser.add_argument('--task_list', type=str, default = "all", help='Either "all" or comma separated list of tasks to download.')
|
13 |
+
args = parser.parse_args()
|
14 |
+
|
15 |
+
def main():
|
16 |
+
task_list = ALL_TASKS if args.task_list == 'all' else args.task_list.split(',')
|
17 |
+
tasks.get_task_dict_promptsource(task_list)
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
main()
|
21 |
+
|
bigscience/evaluation/results/tr11/scripts/multi_eurlex_tmp.slurm
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=multieurlex
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
5 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
8 |
+
#SBATCH --constraint=a100
|
9 |
+
#SBATCH --reservation=hug
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
17 |
+
conda activate muennighofflmevalgen
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# defining the right environment variables
|
22 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
export HF_DATASETS_OFFLINE=1
|
27 |
+
export TRANSFORMERS_OFFLINE=1
|
28 |
+
export TOKENIZERS_PARALLELISM=false
|
29 |
+
|
30 |
+
# Converted transformer checkpoint
|
31 |
+
#MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3/bloom-7b1
|
32 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmixv2lossseq
|
33 |
+
|
34 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
35 |
+
|
36 |
+
DATASETS_AND_CONFIGS=(
|
37 |
+
multi_eurlex_mt,multi,"version-fr-en-source+target"
|
38 |
+
multi_eurlex_mt,multi,"version-en-fr-source+target"
|
39 |
+
multi_eurlex_mt,multi,"a_good_translation-fr-en-source+target"
|
40 |
+
multi_eurlex_mt,multi,"a_good_translation-en-fr-source+target"
|
41 |
+
multi_eurlex_mt,multi,"prev_doc-en-fr"
|
42 |
+
multi_eurlex_mt,multi,"prev_doc-fr-en"
|
43 |
+
)
|
44 |
+
|
45 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
46 |
+
echo $ARGUMENT
|
47 |
+
|
48 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
49 |
+
|
50 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
51 |
+
python main.py \
|
52 |
+
--model_api_name 'hf-causal' \
|
53 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
54 |
+
--device cuda \
|
55 |
+
--batch_size 16 \
|
56 |
+
--no_tracking \
|
57 |
+
--task_name $dataset_name \
|
58 |
+
--template_names $template_name \
|
59 |
+
--bootstrap_iters 10 \
|
60 |
+
--num_fewshot 0 \
|
61 |
+
--limit 500
|
62 |
+
|
63 |
+
echo "END TIME: $(date)"
|
bigscience/evaluation/results/tr11/scripts/report-to-csv.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# this script converts results.json:
|
4 |
+
#
|
5 |
+
# "results": {
|
6 |
+
# "arc_challenge": {
|
7 |
+
# "acc": 0.24232081911262798,
|
8 |
+
# "acc_stderr": 0.01252159329580012,
|
9 |
+
# "acc_norm": 0.2764505119453925,
|
10 |
+
# "acc_norm_stderr": 0.013069662474252425
|
11 |
+
# },
|
12 |
+
#
|
13 |
+
# into a format expected by a spreadsheet, which is:
|
14 |
+
#
|
15 |
+
# task metric value err
|
16 |
+
# arc_challenge acc xxx yyy
|
17 |
+
# arc_challenge acc_norm xxx yyy
|
18 |
+
# arc_challenge f1 xxx yyy
|
19 |
+
#
|
20 |
+
# usage:
|
21 |
+
# report-to-csv.py results.json
|
22 |
+
|
23 |
+
|
24 |
+
import sys
|
25 |
+
import json
|
26 |
+
import io
|
27 |
+
import csv
|
28 |
+
|
29 |
+
results_file = sys.argv[1]
|
30 |
+
|
31 |
+
csv_file = results_file.replace("json", "csv")
|
32 |
+
|
33 |
+
print(f"Converting {results_file} to {csv_file}")
|
34 |
+
|
35 |
+
with io.open(results_file, 'r', encoding='utf-8') as f:
|
36 |
+
results = json.load(f)
|
37 |
+
|
38 |
+
with io.open(csv_file, 'w', encoding='utf-8') as f:
|
39 |
+
|
40 |
+
writer = csv.writer(f)
|
41 |
+
writer.writerow(["task", "metric", "value", "err", "version"])
|
42 |
+
|
43 |
+
versions = results["versions"]
|
44 |
+
|
45 |
+
for k,v in sorted(results["results"].items()):
|
46 |
+
if k not in versions:
|
47 |
+
versions[k] = -1
|
48 |
+
|
49 |
+
if "acc" in v:
|
50 |
+
writer.writerow([k, "acc", v["acc"], v["acc_stderr"], versions[k]])
|
51 |
+
if "acc_norm" in v:
|
52 |
+
writer.writerow([k, "acc_norm", v["acc_norm"], v["acc_norm_stderr"], versions[k]])
|
53 |
+
if "f1" in v:
|
54 |
+
writer.writerow([k, "f1", v["f1"], v["f1_stderr"] if "f1_stderr" in v else "", versions[k]])
|
55 |
+
# if "ppl" in v:
|
56 |
+
# writer.writerow([k, "ppl", v["ppl"], v["ppl_stderr"], versions[k]])
|
57 |
+
# if "em" in v:
|
58 |
+
# writer.writerow([k, "em", v["em"], v["em_stderr"] if "em_stderr" in v else "", versions[k]])
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_176b.slurm
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=genbseval
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --reservation=hug
|
6 |
+
#SBATCH --qos=qos_gpu-gc # up to 100h
|
7 |
+
#SBATCH --nodes=1
|
8 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
9 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
10 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
11 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
12 |
+
#SBATCH --time 100:00:00 # maximum execution time (HH:MM:SS)
|
13 |
+
#SBATCH --output=%x-%j.out # output file name
|
14 |
+
#SBATCH --account=six@a100
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
19 |
+
conda activate muennighofflmevalgen
|
20 |
+
|
21 |
+
echo "START TIME: $(date)"
|
22 |
+
|
23 |
+
# defining the right environment variables
|
24 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
25 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
26 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
27 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
export TOKENIZERS_PARALLELISM=false
|
31 |
+
|
32 |
+
# Converted transformer checkpoint
|
33 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/uan68tv-model-conversion/bloom
|
34 |
+
|
35 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
36 |
+
|
37 |
+
|
38 |
+
DATASETS_AND_CONFIGS=(
|
39 |
+
GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
40 |
+
GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
41 |
+
GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
42 |
+
GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
43 |
+
GEM/wiki_lingua_ar,ar,"tldr_ar"
|
44 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
45 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
46 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
47 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
48 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
49 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
50 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
51 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
52 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
53 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
54 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
55 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
56 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
57 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
58 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
59 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
60 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
61 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
62 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
63 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
64 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
65 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
66 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
67 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
68 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
69 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
70 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
71 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
72 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
73 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
74 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
75 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
76 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
77 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
78 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
79 |
+
GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
80 |
+
GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
81 |
+
GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
82 |
+
GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
83 |
+
GEM/wiki_lingua_zh,zh,"tldr_zh"
|
84 |
+
)
|
85 |
+
|
86 |
+
DATASETS_AND_CONFIGS=(
|
87 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
88 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
89 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
90 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
91 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
92 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
93 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
94 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
95 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
96 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
97 |
+
)
|
98 |
+
|
99 |
+
DATASETS_AND_CONFIGS=(
|
100 |
+
GEM/web_nlg_en,en,"PALM_prompt"
|
101 |
+
GEM/web_nlg_en,en,"explicit-graph-description-2"
|
102 |
+
GEM/web_nlg_en,en,"implicit-graph-description"
|
103 |
+
GEM/web_nlg_en,en,"non-explicit-description"
|
104 |
+
GEM/web_nlg_en,en,"use-category"
|
105 |
+
GEM/web_nlg_ru,ru,"PALM_prompt"
|
106 |
+
GEM/web_nlg_ru,ru,"explicit-graph-description-2-Russian"
|
107 |
+
GEM/web_nlg_ru,ru,"implicit-graph-description-Russian"
|
108 |
+
GEM/web_nlg_ru,ru,"non-explicit-description-Russian"
|
109 |
+
GEM/web_nlg_ru,ru,"use-category-Russian"
|
110 |
+
)
|
111 |
+
|
112 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
113 |
+
echo $ARGUMENT
|
114 |
+
|
115 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
116 |
+
|
117 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
118 |
+
python main.py \
|
119 |
+
--model_api_name 'hf-causal' \
|
120 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=bfloat16 \
|
121 |
+
--device cuda \
|
122 |
+
--batch_size 8 \
|
123 |
+
--no_tracking \
|
124 |
+
--task_name $dataset_name \
|
125 |
+
--template_names $template_name \
|
126 |
+
--bootstrap_iters 10
|
127 |
+
|
128 |
+
echo "END TIME: $(date)"
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_350m.slurm
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-generation-350m
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
16 |
+
conda activate muennighofflmevalgen
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# defining the right environment variables
|
21 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
22 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
23 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
24 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
25 |
+
export HF_DATASETS_OFFLINE=1
|
26 |
+
export TRANSFORMERS_OFFLINE=1
|
27 |
+
export TOKENIZERS_PARALLELISM=false
|
28 |
+
|
29 |
+
# Converted transformer checkpoint
|
30 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/commun/experiments/muennighoff/bloomckpt/350m/bloom-350m
|
31 |
+
|
32 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
33 |
+
|
34 |
+
# WMT19 ZH-EN does not work
|
35 |
+
DATASETS_AND_CONFIGS=(
|
36 |
+
GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
37 |
+
GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
38 |
+
GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
39 |
+
GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
40 |
+
GEM/wiki_lingua_ar,ar,"tldr_ar"
|
41 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
42 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
43 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
44 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
45 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
46 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
47 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
48 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
49 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
50 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
51 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
52 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
53 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
54 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
55 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
56 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
57 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
58 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
59 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
60 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
61 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
62 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
63 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
64 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
65 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
66 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
67 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
68 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
69 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
70 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
71 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
72 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
73 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
74 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
75 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
76 |
+
GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
77 |
+
GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
78 |
+
GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
79 |
+
GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
80 |
+
GEM/wiki_lingua_zh,zh,"tldr_zh"
|
81 |
+
)
|
82 |
+
|
83 |
+
#GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
84 |
+
#GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
85 |
+
#GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
86 |
+
#GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
87 |
+
#GEM/wiki_lingua_ar,ar,"tldr_ar"
|
88 |
+
#GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
89 |
+
#GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
90 |
+
#GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
91 |
+
#GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
92 |
+
#GEM/wiki_lingua_zh,zh,"tldr_zh"
|
93 |
+
|
94 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
95 |
+
echo $ARGUMENT
|
96 |
+
|
97 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
98 |
+
|
99 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
100 |
+
python main.py \
|
101 |
+
--model_api_name 'hf-causal' \
|
102 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
103 |
+
--device cuda \
|
104 |
+
--batch_size 16 \
|
105 |
+
--no_tracking \
|
106 |
+
--task_name $dataset_name \
|
107 |
+
--template_names $template_name \
|
108 |
+
--bootstrap_iters 10
|
109 |
+
|
110 |
+
echo "END TIME: $(date)"
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_6b3.slurm
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=evaluate_t0
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
5 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
8 |
+
#SBATCH --constraint=a100
|
9 |
+
#SBATCH --reservation=hug
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
17 |
+
conda activate muennighofflmevalgen
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# defining the right environment variables
|
22 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
export HF_DATASETS_OFFLINE=1
|
27 |
+
export TRANSFORMERS_OFFLINE=1
|
28 |
+
export TOKENIZERS_PARALLELISM=false
|
29 |
+
|
30 |
+
# Converted transformer checkpoint
|
31 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3/bloom-7b1
|
32 |
+
|
33 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
34 |
+
|
35 |
+
# WMT19 ZH-EN does not work
|
36 |
+
DATASETS_AND_CONFIGS=(
|
37 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
38 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
39 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
40 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
41 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
42 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
43 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
44 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
45 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
46 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
47 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
48 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
49 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
50 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
51 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
52 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
53 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
54 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
55 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
56 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
57 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
58 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
59 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
60 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
61 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
62 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
63 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
64 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
65 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
66 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
67 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
68 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
69 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
70 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
71 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
72 |
+
)
|
73 |
+
|
74 |
+
#GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
75 |
+
#GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
76 |
+
#GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
77 |
+
#GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
78 |
+
#GEM/wiki_lingua_ar,ar,"tldr_ar"
|
79 |
+
#GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
80 |
+
#GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
81 |
+
#GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
82 |
+
#GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
83 |
+
#GEM/wiki_lingua_zh,zh,"tldr_zh"
|
84 |
+
|
85 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
86 |
+
echo $ARGUMENT
|
87 |
+
|
88 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
89 |
+
|
90 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
91 |
+
python main.py \
|
92 |
+
--model_api_name 'hf-causal' \
|
93 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
94 |
+
--device cuda \
|
95 |
+
--batch_size 16 \
|
96 |
+
--no_tracking \
|
97 |
+
--task_name $dataset_name \
|
98 |
+
--template_names $template_name \
|
99 |
+
--bootstrap_iters 10
|
100 |
+
|
101 |
+
echo "END TIME: $(date)"
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_generation_760m.slurm
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-generation-760m
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
16 |
+
conda activate muennighofflmevalgen
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# defining the right environment variables
|
21 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
22 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
23 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
24 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
25 |
+
export HF_DATASETS_OFFLINE=1
|
26 |
+
export TRANSFORMERS_OFFLINE=1
|
27 |
+
export TOKENIZERS_PARALLELISM=false
|
28 |
+
|
29 |
+
# Converted transformer checkpoint
|
30 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/760m/bloom-760m
|
31 |
+
|
32 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
33 |
+
|
34 |
+
# WMT19 ZH-EN does not work
|
35 |
+
DATASETS_AND_CONFIGS=(
|
36 |
+
GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
37 |
+
GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
38 |
+
GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
39 |
+
GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
40 |
+
GEM/wiki_lingua_ar,ar,"tldr_ar"
|
41 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
42 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
43 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
44 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
45 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
46 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
47 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
48 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
49 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
50 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
51 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
52 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
53 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
54 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
55 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
56 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
57 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
58 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
59 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
60 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
61 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
62 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
63 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
64 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
65 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
66 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
67 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
68 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
69 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
70 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
71 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
72 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
73 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
74 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
75 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
76 |
+
GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
77 |
+
GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
78 |
+
GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
79 |
+
GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
80 |
+
GEM/wiki_lingua_zh,zh,"tldr_zh"
|
81 |
+
)
|
82 |
+
|
83 |
+
#GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
84 |
+
#GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
85 |
+
#GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
86 |
+
#GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
87 |
+
#GEM/wiki_lingua_ar,ar,"tldr_ar"
|
88 |
+
#GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
89 |
+
#GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
90 |
+
#GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
91 |
+
#GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
92 |
+
#GEM/wiki_lingua_zh,zh,"tldr_zh"
|
93 |
+
|
94 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
95 |
+
echo $ARGUMENT
|
96 |
+
|
97 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
98 |
+
|
99 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
100 |
+
python main.py \
|
101 |
+
--model_api_name 'hf-causal' \
|
102 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
103 |
+
--device cuda \
|
104 |
+
--batch_size 16 \
|
105 |
+
--no_tracking \
|
106 |
+
--task_name $dataset_name \
|
107 |
+
--template_names $template_name \
|
108 |
+
--bootstrap_iters 10
|
109 |
+
|
110 |
+
echo "END TIME: $(date)"
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11-176b-ml.slurm
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11-176b-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
23 |
+
VARIANT="tr11-176b-ml-bsevalharness"
|
24 |
+
|
25 |
+
|
26 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11-176B-ml/checkpoints/main/global_step90000
|
27 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
32 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
33 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
34 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
35 |
+
|
36 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
37 |
+
|
38 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
39 |
+
|
40 |
+
PP_SIZE=8
|
41 |
+
TP_SIZE=1
|
42 |
+
SEQ_LEN=2048
|
43 |
+
|
44 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
45 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
46 |
+
EVAL_MICRO_BATCH_SIZE=1
|
47 |
+
|
48 |
+
#dummy arguments to make megatron happy.
|
49 |
+
MEGATRON_REQUIRED_ARGS=" \
|
50 |
+
--num-layers -1 \
|
51 |
+
--hidden-size -1 \
|
52 |
+
--num-attention-heads -1 \
|
53 |
+
--seq-length -1 \
|
54 |
+
--max-position-embeddings -1 \
|
55 |
+
"
|
56 |
+
|
57 |
+
|
58 |
+
ZERO_STAGE=0
|
59 |
+
|
60 |
+
config_json="./ds_config.json"
|
61 |
+
|
62 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
63 |
+
cat <<EOT > $config_json
|
64 |
+
{
|
65 |
+
"train_micro_batch_size_per_gpu": 1,
|
66 |
+
"train_batch_size": 1,
|
67 |
+
"gradient_clipping": 1.0,
|
68 |
+
"zero_optimization": {
|
69 |
+
"stage": $ZERO_STAGE
|
70 |
+
},
|
71 |
+
"bf16": {
|
72 |
+
"enabled": true
|
73 |
+
},
|
74 |
+
"steps_per_print": 2000,
|
75 |
+
"wall_clock_breakdown": false
|
76 |
+
}
|
77 |
+
EOT
|
78 |
+
|
79 |
+
|
80 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
81 |
+
--load $CHECKPOINT_PATH \
|
82 |
+
--results_path $VARIANT-results.json \
|
83 |
+
--tensor-model-parallel-size $TP_SIZE \
|
84 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
85 |
+
--tokenizer-type PretrainedFromHF \
|
86 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
87 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
88 |
+
--no-load-optim \
|
89 |
+
--no-load-rng \
|
90 |
+
--bf16 \
|
91 |
+
--inference \
|
92 |
+
--seq-length $SEQ_LEN \
|
93 |
+
--task_list wnli \
|
94 |
+
--deepspeed \
|
95 |
+
--deepspeed_config ds_config.json \
|
96 |
+
--intermed_results \
|
97 |
+
--adaptive_seq_len \
|
98 |
+
--micro_bs_multiplier 16 \
|
99 |
+
--offloadearly \
|
100 |
+
$MEGATRON_REQUIRED_ARGS \
|
101 |
+
"
|
102 |
+
|
103 |
+
GPUS_PER_NODE=8
|
104 |
+
NNODES=$SLURM_NNODES
|
105 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
106 |
+
MASTER_PORT=6000
|
107 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
108 |
+
--nproc_per_node $GPUS_PER_NODE \
|
109 |
+
--nnodes $NNODES \
|
110 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
111 |
+
--rdzv_backend c10d \
|
112 |
+
--max_restarts 0 \
|
113 |
+
--tee 3 \
|
114 |
+
"
|
115 |
+
|
116 |
+
export CUDA_LAUNCH_BLOCKING=1
|
117 |
+
|
118 |
+
echo $LAUNCHER $CMD
|
119 |
+
|
120 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
121 |
+
|
122 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11b-1b3-ml.slurm
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11b-1b3-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
23 |
+
VARIANT="tr11b-1b3-ml-bsevalharness"
|
24 |
+
|
25 |
+
|
26 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11b-1B3-ml/checkpoints/main/global_step340500
|
27 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
32 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
33 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
34 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
35 |
+
export TOKENIZERS_PARALLELISM=false
|
36 |
+
|
37 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
38 |
+
|
39 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
40 |
+
|
41 |
+
PP_SIZE=1
|
42 |
+
TP_SIZE=1
|
43 |
+
SEQ_LEN=2048
|
44 |
+
|
45 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
46 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
47 |
+
EVAL_MICRO_BATCH_SIZE=1
|
48 |
+
|
49 |
+
#dummy arguments to make megatron happy.
|
50 |
+
MEGATRON_REQUIRED_ARGS=" \
|
51 |
+
--num-layers -1 \
|
52 |
+
--hidden-size -1 \
|
53 |
+
--num-attention-heads -1 \
|
54 |
+
--seq-length -1 \
|
55 |
+
--max-position-embeddings -1 \
|
56 |
+
"
|
57 |
+
|
58 |
+
|
59 |
+
ZERO_STAGE=0
|
60 |
+
|
61 |
+
config_json="./ds_config.json"
|
62 |
+
|
63 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
64 |
+
cat <<EOT > $config_json
|
65 |
+
{
|
66 |
+
"train_micro_batch_size_per_gpu": 1,
|
67 |
+
"train_batch_size": 1,
|
68 |
+
"gradient_clipping": 1.0,
|
69 |
+
"zero_optimization": {
|
70 |
+
"stage": $ZERO_STAGE
|
71 |
+
},
|
72 |
+
"bf16": {
|
73 |
+
"enabled": false
|
74 |
+
},
|
75 |
+
"steps_per_print": 2000,
|
76 |
+
"wall_clock_breakdown": false
|
77 |
+
}
|
78 |
+
EOT
|
79 |
+
|
80 |
+
|
81 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
82 |
+
--load $CHECKPOINT_PATH \
|
83 |
+
--results_path $VARIANT-results.json \
|
84 |
+
--tensor-model-parallel-size $TP_SIZE \
|
85 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
86 |
+
--tokenizer-type PretrainedFromHF \
|
87 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
88 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
89 |
+
--no-load-optim \
|
90 |
+
--no-load-rng \
|
91 |
+
--inference \
|
92 |
+
--seq-length $SEQ_LEN \
|
93 |
+
--task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
|
94 |
+
--eval_fp32 \
|
95 |
+
--deepspeed \
|
96 |
+
--deepspeed_config ds_config.json \
|
97 |
+
--intermed_results \
|
98 |
+
--adaptive_seq_len \
|
99 |
+
--micro_bs_multiplier 8 \
|
100 |
+
$MEGATRON_REQUIRED_ARGS \
|
101 |
+
"
|
102 |
+
|
103 |
+
GPUS_PER_NODE=1
|
104 |
+
NNODES=$SLURM_NNODES
|
105 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
106 |
+
MASTER_PORT=6000
|
107 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
108 |
+
--nproc_per_node $GPUS_PER_NODE \
|
109 |
+
--nnodes $NNODES \
|
110 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
111 |
+
--rdzv_backend c10d \
|
112 |
+
--max_restarts 0 \
|
113 |
+
--tee 3 \
|
114 |
+
"
|
115 |
+
|
116 |
+
export CUDA_LAUNCH_BLOCKING=1
|
117 |
+
|
118 |
+
echo $LAUNCHER $CMD
|
119 |
+
|
120 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
121 |
+
|
122 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11d-750m-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11d-760m-ml
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
21 |
+
VARIANT="tr11d-760m-ml-bsevalharness"
|
22 |
+
|
23 |
+
|
24 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11d-760M-ml/checkpoints/main/global_step660750
|
25 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bslmeval/Megatron-DeepSpeed
|
26 |
+
export HF_DATASETS_OFFLINE=1
|
27 |
+
export TRANSFORMERS_OFFLINE=1
|
28 |
+
|
29 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
30 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
31 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
32 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
33 |
+
export TOKENIZERS_PARALLELISM=false
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--inference \
|
90 |
+
--seq-length $SEQ_LEN \
|
91 |
+
--task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
|
92 |
+
--eval_fp32 \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 4 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6002
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
bigscience/evaluation/results/tr11/scripts/run_bsevalharness_tr11f-6b3-ml.slurm
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11f-6b3-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
23 |
+
VARIANT="tr11f-6b3-ml-bsevalharness"
|
24 |
+
|
25 |
+
|
26 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11f-6B3-ml/checkpoints/main/global_step337500
|
27 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bslmeval/Megatron-DeepSpeed
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
32 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
33 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
34 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
35 |
+
export TOKENIZERS_PARALLELISM=false
|
36 |
+
|
37 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
38 |
+
|
39 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
40 |
+
|
41 |
+
PP_SIZE=1
|
42 |
+
TP_SIZE=1
|
43 |
+
SEQ_LEN=2048
|
44 |
+
|
45 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
46 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
47 |
+
EVAL_MICRO_BATCH_SIZE=1
|
48 |
+
|
49 |
+
#dummy arguments to make megatron happy.
|
50 |
+
MEGATRON_REQUIRED_ARGS=" \
|
51 |
+
--num-layers -1 \
|
52 |
+
--hidden-size -1 \
|
53 |
+
--num-attention-heads -1 \
|
54 |
+
--seq-length -1 \
|
55 |
+
--max-position-embeddings -1 \
|
56 |
+
"
|
57 |
+
|
58 |
+
|
59 |
+
ZERO_STAGE=0
|
60 |
+
|
61 |
+
config_json="./ds_config.json"
|
62 |
+
|
63 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
64 |
+
cat <<EOT > $config_json
|
65 |
+
{
|
66 |
+
"train_micro_batch_size_per_gpu": 1,
|
67 |
+
"train_batch_size": 1,
|
68 |
+
"gradient_clipping": 1.0,
|
69 |
+
"zero_optimization": {
|
70 |
+
"stage": $ZERO_STAGE
|
71 |
+
},
|
72 |
+
"bf16": {
|
73 |
+
"enabled": false
|
74 |
+
},
|
75 |
+
"steps_per_print": 2000,
|
76 |
+
"wall_clock_breakdown": false
|
77 |
+
}
|
78 |
+
EOT
|
79 |
+
|
80 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
81 |
+
--load $CHECKPOINT_PATH \
|
82 |
+
--results_path $VARIANT-results.json \
|
83 |
+
--tensor-model-parallel-size $TP_SIZE \
|
84 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
85 |
+
--tokenizer-type PretrainedFromHF \
|
86 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
87 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
88 |
+
--no-load-optim \
|
89 |
+
--no-load-rng \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
|
93 |
+
--eval_fp32 \
|
94 |
+
--deepspeed \
|
95 |
+
--deepspeed_config ds_config.json \
|
96 |
+
--intermed_results \
|
97 |
+
--adaptive_seq_len \
|
98 |
+
--micro_bs_multiplier 8 \
|
99 |
+
$MEGATRON_REQUIRED_ARGS \
|
100 |
+
"
|
101 |
+
|
102 |
+
GPUS_PER_NODE=1
|
103 |
+
NNODES=$SLURM_NNODES
|
104 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
105 |
+
MASTER_PORT=6000
|
106 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
107 |
+
--nproc_per_node $GPUS_PER_NODE \
|
108 |
+
--nnodes $NNODES \
|
109 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
110 |
+
--rdzv_backend c10d \
|
111 |
+
--max_restarts 0 \
|
112 |
+
--tee 3 \
|
113 |
+
"
|
114 |
+
|
115 |
+
export CUDA_LAUNCH_BLOCKING=1
|
116 |
+
|
117 |
+
echo $LAUNCHER $CMD
|
118 |
+
|
119 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
120 |
+
|
121 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
bigscience/evaluation/results/tr11/scripts/run_evalharness_deepspeed.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to run lm-eval on Megatron-DeepSpeed checkpoint using the original setup
|
2 |
+
|
3 |
+
This particular setup uses the normal deepspeed checkpoint and requires no conversion to Megatron-LM.
|
4 |
+
|
5 |
+
This doc assumes usage on JZ, so some peculiar requirements in places. Ignore these if you're not running this on JZ.
|
6 |
+
|
7 |
+
## Prerequisites
|
8 |
+
|
9 |
+
1. Install software
|
10 |
+
|
11 |
+
On login console with external network
|
12 |
+
|
13 |
+
Get lm-eval harness (https://github.com/EleutherAI/lm-evaluation-harness) and `best-download==0.0.7` needed to download some tasks.
|
14 |
+
```
|
15 |
+
start-prod
|
16 |
+
pip install best-download==0.0.7
|
17 |
+
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
|
18 |
+
```
|
19 |
+
|
20 |
+
2. Pre-download needed datasets
|
21 |
+
|
22 |
+
some symlinks due to lm-harness' issues with relative position of data
|
23 |
+
```
|
24 |
+
mkdir data
|
25 |
+
ln -s `pwd`/data tasks/eval_harness/data
|
26 |
+
```
|
27 |
+
Also make sure `data` is not on one of the limited paritions like WORKSF.
|
28 |
+
|
29 |
+
Then install datasets for the tasks:
|
30 |
+
```
|
31 |
+
python ./tasks/eval_harness/download.py --task_list
|
32 |
+
arc_challenge,arc_easy,boolq,copa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc
|
33 |
+
```
|
34 |
+
and make sure that `export HF_DATASETS_OFFLINE=1`
|
35 |
+
|
36 |
+
If there are things like custom tokenizers, pre-download those too, e.g.:
|
37 |
+
|
38 |
+
```
|
39 |
+
python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('bigscience/oscar_13_languages_alpha_weight')"
|
40 |
+
```
|
41 |
+
and make sure that `export TRANSFORMERS_OFFLINE=1` is in the script.
|
42 |
+
You know there is a custom tokenizer if the training script had something like:
|
43 |
+
|
44 |
+
```
|
45 |
+
--tokenizer-type PretrainedFromHF \
|
46 |
+
--tokenizer-name-or-path bigscience/oscar_13_languages_alpha_weight \
|
47 |
+
```
|
48 |
+
|
49 |
+
3. Prepare the slurm script
|
50 |
+
|
51 |
+
Prepare the run script, replace `variant` with a unique identifier for the current eval so that multiple evals could run in parallel and not all log into the same `results.json` file. so, e.g., `tr9c-1B3-swiglu`
|
52 |
+
|
53 |
+
```
|
54 |
+
cp examples/run_evalharness_deepspeed.slurm run_evalharness-variant.slurm
|
55 |
+
```
|
56 |
+
|
57 |
+
now edit `run_evalharness-variant.slurm`
|
58 |
+
|
59 |
+
|
60 |
+
Note that the eval code knows to pull the original training args from the checkpoint, so we don't need to pass any of those. And we just need to setup the evaluation args.
|
61 |
+
|
62 |
+
Note that for the bigscience lm-eval-harness fork (https://github.com/bigscience-workshop/lm-evaluation-harness), the corresponding scripts are `evaluate_bsevalharness.py` & `run_bsevalharness_tr11-176b-ml.slurm`.
|
63 |
+
|
64 |
+
1. Edit:
|
65 |
+
|
66 |
+
```
|
67 |
+
PP_SIZE=1
|
68 |
+
TP_SIZE=1
|
69 |
+
```
|
70 |
+
to match the eval topology. If the model fits into 1 gpu, then there is nothing to change.
|
71 |
+
|
72 |
+
The eval script will automatically reshape the model if it was of a different topology.
|
73 |
+
|
74 |
+
|
75 |
+
2. Adjust the following to fit the chosen GPU. As of last check for 1.3B model the settings are one of:
|
76 |
+
```
|
77 |
+
EVAL_MICRO_BATCH_SIZE=6 # 16GB GPU 1.3B model
|
78 |
+
EVAL_MICRO_BATCH_SIZE=12 # 32GB GPU 1.3B model
|
79 |
+
```
|
80 |
+
|
81 |
+
If you get OOM lower it further.
|
82 |
+
|
83 |
+
3. If not using the Deepspeed path, disable it by removing:
|
84 |
+
|
85 |
+
```
|
86 |
+
--deepspeed \
|
87 |
+
--deepspeed_config ds_config.json \
|
88 |
+
```
|
89 |
+
|
90 |
+
If you didn't disable it and the program crashed on checkpoint loading unable to find some key, disable deepspeed as explained above.
|
91 |
+
|
92 |
+
4. Additional flags
|
93 |
+
|
94 |
+
- To reduce the amount of iterations for stderr estimation, use e.g. `--bootstrap_iters 2`. This saves 1-2 minutes per dataset.
|
95 |
+
- To print intermediate results when running multiple tasks use `--intermed_results`.
|
96 |
+
- To reduce the bubble when setting PP use the flag `--micro_bs_multiplier`. Reducing `--micro-batch-size` may be needed when increasing the multiplier.
|
97 |
+
- Running the 176B model with PP=8, `--micro_bs_multiplier 8` & `--micro-batch-size 4` produced the fastest results for PiQA on 1 node in 2min18s.
|
98 |
+
|
99 |
+
## Eval
|
100 |
+
|
101 |
+
Currently it takes 2-3 hours to run on 32GB for 1.3B model, 6-7h for 16GB GPU, so a 20h slurm job should be enough.
|
102 |
+
|
103 |
+
When ready, launch:
|
104 |
+
```
|
105 |
+
sbatch ./run_evalharness-variant.slurm
|
106 |
+
```
|
107 |
+
|
108 |
+
To monitor progress:
|
109 |
+
```
|
110 |
+
tail -f tail -f $VARIANT-eval-harness.log
|
111 |
+
```
|
112 |
+
where the variant is what you set `$VARIANT` to in the slurm script.
|
113 |
+
|
114 |
+
The template is set up for 16GB gpu since they are easier to get by. If you change to 32GB, adjust:
|
115 |
+
```
|
116 |
+
#SBATCH --constraint=v100-32g
|
117 |
+
...
|
118 |
+
EVAL_MICRO_BATCH_SIZE=12 # 32GB GPU 1.3B model
|
119 |
+
```
|
120 |
+
|
121 |
+
|
122 |
+
Note that the original ETA at the start of the run can be 10x too longer than the actual outcome. For example it may suggest 18 hours but will complete in 2 hours.
|
123 |
+
|
124 |
+
|
125 |
+
## Short eval
|
126 |
+
|
127 |
+
if you just want to quickly test that everything can run to the end, edit `tasks/eval_harness/evaluate.py`, e.g. to run only 10 batches:
|
128 |
+
```
|
129 |
+
- results = evaluator.evaluate(adaptor, task_dict, False, 0, None)
|
130 |
+
+ results = evaluator.evaluate(adaptor, task_dict, False, 0, 10)
|
131 |
+
```
|
132 |
+
|
133 |
+
(XXX: could be a cmd line option so that code won't need to be modified)
|
134 |
+
|
135 |
+
|
136 |
+
## Import into spreadsheet
|
137 |
+
|
138 |
+
https://docs.google.com/spreadsheets/d/1CI8Q9RCblLRzUOPJ6ViqBmo284-8ojluQ-CmaEuhuv0/edit?usp=sharing
|
139 |
+
|
140 |
+
Note that the spreadsheet format is quite different, so use this script:
|
141 |
+
```
|
142 |
+
./tasks/eval_harness/report-to-csv.py results.json
|
143 |
+
```
|
144 |
+
to reformat the json results into csv while changing its shape to match the spreadsheet format
|
145 |
+
|
146 |
+
Since some records might be missing or extraneous here is the best way to do it:
|
147 |
+
|
148 |
+
1. copy the data from first 2 columns to some place under the main spreadsheet
|
149 |
+
|
150 |
+
2. put the pointer to the 3rd column next to where the 2 first columns were copied.
|
151 |
+
|
152 |
+
3. import `results.csv` using file-> import -> file ->
|
153 |
+
|
154 |
+
Import location: Replace data at selected cell
|
155 |
+
|
156 |
+
4. Now it should be easy to align the new records with the old ones - delete irrelevant records and Insert->Cells where data is missing until the first 2 columns match
|
157 |
+
|
158 |
+
5. now create 2 cols in the main table on top and now it should be safe to Copy-n-Paste the 2-col data range, without the task/metrics columns into the newly created space.
|
bigscience/evaluation/results/tr11/scripts/run_evalharness_deepspeed.slurm
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=eval-harness-deepspeed
|
3 |
+
#SBATCH --constraint=v100-16g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@gpu
|
12 |
+
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-prod
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# a unique identifier for the current eval so that multiple evals could run in parallel and not all log into the same "results.json" file.
|
21 |
+
VARIANT="tr9c-1B3-swiglu"
|
22 |
+
|
23 |
+
CHECKPOINT_PATH=/gpfsdsstore/projects/rech/six/commun/checkpoints/tr3m-1B3-emb-norm-pile/global_step296023
|
24 |
+
MEGATRON_DEEPSPEED_REPO=/gpfsssd/worksf/projects/rech/six/commun/code/eval/Megatron-DeepSpeed
|
25 |
+
|
26 |
+
# you want these 2 on JZ, and pre-download/cache any datasets/tokenizers/models
|
27 |
+
# but comment these out if you're running on a node with Internet access
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
32 |
+
|
33 |
+
# eval topology
|
34 |
+
PP_SIZE=1
|
35 |
+
TP_SIZE=1
|
36 |
+
|
37 |
+
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
|
38 |
+
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
|
39 |
+
SEQ_LEN=2048
|
40 |
+
|
41 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
42 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
43 |
+
|
44 |
+
EVAL_MICRO_BATCH_SIZE=6 # 16GB GPU 1.3B model
|
45 |
+
#EVAL_MICRO_BATCH_SIZE=12 # 32GB GPU 1.3B model
|
46 |
+
|
47 |
+
|
48 |
+
#dummy arguments to make megatron happy.
|
49 |
+
MEGATRON_REQUIRED_ARGS=" \
|
50 |
+
--num-layers -1 \
|
51 |
+
--hidden-size -1 \
|
52 |
+
--num-attention-heads -1 \
|
53 |
+
--seq-length -1 \
|
54 |
+
--max-position-embeddings -1
|
55 |
+
"
|
56 |
+
|
57 |
+
|
58 |
+
ZERO_STAGE=0
|
59 |
+
|
60 |
+
config_json="./ds_config.json"
|
61 |
+
cat <<EOT > $config_json
|
62 |
+
{
|
63 |
+
"train_micro_batch_size_per_gpu": 1,
|
64 |
+
"train_batch_size": 1,
|
65 |
+
"zero_optimization": { "stage": $ZERO_STAGE },
|
66 |
+
"fp16": { "enabled": true },
|
67 |
+
"steps_per_print": 2000,
|
68 |
+
"wall_clock_breakdown": false
|
69 |
+
}
|
70 |
+
EOT
|
71 |
+
|
72 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
73 |
+
--load $CHECKPOINT_PATH \
|
74 |
+
--results_path $VARIANT-results.json \
|
75 |
+
--tensor-model-parallel-size $TP_SIZE \
|
76 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
77 |
+
--vocab-file $VOCAB_FILE \
|
78 |
+
--merge-file $MERGE_FILE \
|
79 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
80 |
+
--no-load-optim \
|
81 |
+
--no-load-rng \
|
82 |
+
--inference \
|
83 |
+
--deepspeed \
|
84 |
+
--deepspeed_config ds_config.json \
|
85 |
+
--seq-length $SEQ_LEN \
|
86 |
+
--adaptive_seq_len \
|
87 |
+
--eval_fp32 \
|
88 |
+
--task_list arc_challenge,arc_easy,boolq,copa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sst,webqs,wic,winogrande,wnli,wsc,triviaqa,sciq \
|
89 |
+
$MEGATRON_REQUIRED_ARGS \
|
90 |
+
"
|
91 |
+
|
92 |
+
N_GPUS=1
|
93 |
+
LAUNCHER="deepspeed --num_gpus $N_GPUS"
|
94 |
+
echo $LAUNCHER $CMD
|
95 |
+
|
96 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
97 |
+
|
98 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
bigscience/evaluation/results/tr11/scripts/run_evalharness_tr11b-1b3-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11b-2b5-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr11b-1b3-ml-evalharness"
|
23 |
+
|
24 |
+
|
25 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11b-1B3-ml/checkpoints/main/global_step340500
|
26 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--eval_fp32 \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 8 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6000
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
bigscience/evaluation/results/tr11/scripts/run_evalharness_tr11c-2b5-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11b-2b5-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr11b-2b5-ml-evalharness"
|
23 |
+
|
24 |
+
|
25 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11c-2B5-ml/checkpoints/main/global_step337250
|
26 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--eval_fp32 \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 8 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6000
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|