|
import datasets |
|
import json |
|
from string import Template |
|
from pathlib import Path |
|
|
|
_HOMEPAGE = "" |
|
_CITATION = "" |
|
_LICENSE = "" |
|
_DESCRIPTION_TEMPLATE = Template( |
|
"$num_classes-way image classification task " |
|
"to test domain shift of class $spurious_class from " |
|
"context $source_context to $target_context. " |
|
"Selected classes: $selected_classes" |
|
) |
|
_REPO = "https://huggingface.co/datasets/dgcnz/pcbm-metashift/resolve/main" |
|
_IMAGES_DIR = Path("data") |
|
|
|
|
|
class PCBMMetashiftConfig(datasets.BuilderConfig): |
|
"""Builder Config for Food-101""" |
|
|
|
def __init__( |
|
self, |
|
metadata_path: str, |
|
selected_classes: list[str], |
|
spurious_class: str, |
|
source_context: str, |
|
target_context: str, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for Food-101. |
|
Args: |
|
data_url: `string`, url to download the zip file from. |
|
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PCBMMetashiftConfig, self).__init__( |
|
version=datasets.Version("1.0.0"), **kwargs |
|
) |
|
self.metadata_path = metadata_path |
|
self.selected_classes = selected_classes |
|
self.spurious_class = spurious_class |
|
self.source_context = source_context |
|
self.target_context = target_context |
|
|
|
|
|
class PCBMMetashift(datasets.GeneratorBasedBuilder): |
|
"""Food-101 Images dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PCBMMetashiftConfig( |
|
name="task_abcck_bed_cat_dog", |
|
description="Task 1: bed(cat) -> bed(dog)", |
|
metadata_path="configs/task_abcck_bed_cat_dog.json", |
|
selected_classes=["airplane", "bed", "car", "cow", "keyboard"], |
|
spurious_class="bed", |
|
source_context="cat", |
|
target_context="dog", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_abcck_bed_dog_cat", |
|
description="Task 1: bed(dog) -> bed(cat)", |
|
metadata_path="configs/task_abcck_bed_dog_cat.json", |
|
selected_classes=["airplane", "bed", "car", "cow", "keyboard"], |
|
spurious_class="bed", |
|
source_context="dog", |
|
target_context="cat", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_abcck_car_cat_dog", |
|
description="Task 1: car(cat) -> car(dog)", |
|
metadata_path="configs/task_abcck_car_cat_dog.json", |
|
selected_classes=["airplane", "bed", "car", "cow", "keyboard"], |
|
spurious_class="car", |
|
source_context="cat", |
|
target_context="dog", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_abcck_car_dog_cat", |
|
description="Task 1: car(dog) -> car(cat)", |
|
metadata_path="configs/task_abcck_car_dog_cat.json", |
|
selected_classes=["airplane", "bed", "car", "cow", "keyboard"], |
|
spurious_class="car", |
|
source_context="dog", |
|
target_context="cat", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_bcmst_table_books_cat", |
|
description="Task 2: table(books) -> table(cat)", |
|
metadata_path="configs/task_bcmst_table_books_cat.json", |
|
selected_classes=["beach", "computer", "motorcycle", "stove", "table"], |
|
spurious_class="table", |
|
source_context="books", |
|
target_context="cat", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_bcmst_table_books_dog", |
|
description="Task 2: table(books) -> table(dog)", |
|
metadata_path="configs/task_bcmst_table_books_dog.json", |
|
selected_classes=["beach", "computer", "motorcycle", "stove", "table"], |
|
spurious_class="table", |
|
source_context="books", |
|
target_context="dog", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_bcmst_table_cat_dog", |
|
description="Task 2: table(cat) -> table(dog)", |
|
metadata_path="configs/task_bcmst_table_cat_dog.json", |
|
selected_classes=["beach", "computer", "motorcycle", "stove", "table"], |
|
spurious_class="table", |
|
source_context="cat", |
|
target_context="dog", |
|
), |
|
PCBMMetashiftConfig( |
|
name="task_bcmst_table_dog_cat", |
|
description="Task 2: table(dog) -> table(cat)", |
|
metadata_path="configs/task_bcmst_table_dog_cat.json", |
|
selected_classes=["beach", "computer", "motorcycle", "stove", "table"], |
|
spurious_class="table", |
|
source_context="dog", |
|
target_context="cat", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION_TEMPLATE.substitute( |
|
num_classes=len(self.config.selected_classes), |
|
spurious_class=self.config.spurious_class, |
|
source_context=self.config.source_context, |
|
target_context=self.config.target_context, |
|
selected_classes=", ".join(self.config.selected_classes), |
|
), |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=self.config.selected_classes), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
task_templates=[ |
|
datasets.ImageClassification(image_column="image", label_column="label") |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(f"{_REPO}/data/images.tar.gz") |
|
metadata_path = dl_manager.download(f"{_REPO}/{self.config.metadata_path}") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": metadata_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": metadata_path, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path: str, split: str): |
|
"""Generate images and labels for splits.""" |
|
with open(metadata_path, encoding="utf-8") as f: |
|
metadata = json.load(f) |
|
split_data = metadata["data_splits"][split] |
|
ids_to_keep = set() |
|
for _, ids in split_data.items(): |
|
ids_to_keep.update([Path(id).stem for id in ids]) |
|
|
|
files = dict() |
|
for file_path, file_obj in images: |
|
image_id = Path(file_path).stem |
|
if image_id in ids_to_keep: |
|
files[image_id] = (file_obj.read(), file_path) |
|
|
|
for cls, ids in split_data.items(): |
|
for image_id in ids: |
|
image_id = Path(image_id).stem |
|
file_obj, file_path = files[image_id] |
|
yield f"{cls}_{image_id}", { |
|
"image": {"path": file_path, "bytes": file_obj}, |
|
"label": cls, |
|
} |
|
|