import os import sys import csv import datasets csv.field_size_limit(sys.maxsize) _DESCRIPTION = "Java 8M Methods :: A collection 8 million java methods (Version 2) [PROBE COMPATIBLE]" _CITATION = "NOT AVAILABLE" _HOMEPAGE = "NOT AVAILABLE" _LICENSE = "MIT" _BASE_TRAIN_FILE_URL = "https://huggingface.co/datasets/anjandash/java-8m-methods-v2/resolve/main/train.csv" _BASE_VALID_FILE_URL = "https://huggingface.co/datasets/anjandash/java-8m-methods-v2/resolve/main/valid.csv" _BASE_TEST_FILE_URL = "https://huggingface.co/datasets/anjandash/java-8m-methods-v2/resolve/main/test.csv" _URLS = { "train": _BASE_TRAIN_FILE_URL, "valid": _BASE_VALID_FILE_URL, "test": _BASE_TEST_FILE_URL } class Java8mMethodsV2(datasets.GeneratorBasedBuilder): # or datasets.DatasetBuilder """Java 8M Methods (Version 2) [PROBE COMPATIBLE]""" def _info(self): """Returns Info""" return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), } ), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators""" data_file = dl_manager.download(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_file["valid"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_file["test"] }), ] def _generate_examples(self, filepath): """Yields Examples""" with open(filepath, encoding="utf-8") as f: reader = csv.reader(f) for id_, row in enumerate(reader): if id_ == 0: continue yield id_, { "id": row[0], "text": row[1], }