Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
"""TODO(cosmos_qa): Add a description here.""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import json | |
import os | |
import datasets | |
# TODO(cosmos_qa): BibTeX citation | |
_CITATION = """\ | |
@inproceedings{cosmos, | |
title={COSMOS QA: Machine Reading Comprehension | |
with Contextual Commonsense Reasoning}, | |
author={Lifu Huang and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi}, | |
booktitle ={arXiv:1909.00277v2}, | |
year={2019} | |
} | |
""" | |
# TODO(cosmos_qa): | |
_DESCRIPTION = """\ | |
Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context | |
""" | |
_URL = "https://github.com/wilburOne/cosmosqa/raw/master/data/" | |
_TEST_FILE = "test.jsonl" | |
_TRAIN_FILE = "train.csv" | |
_DEV_FILE = "valid.csv" | |
class CosmosQa(datasets.GeneratorBasedBuilder): | |
"""TODO(cosmos_qa): Short description of my dataset.""" | |
# TODO(cosmos_qa): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(cosmos_qa): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answer0": datasets.Value("string"), | |
"answer1": datasets.Value("string"), | |
"answer2": datasets.Value("string"), | |
"answer3": datasets.Value("string"), | |
"label": datasets.Value("int32") | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://wilburone.github.io/cosmos/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(cosmos_qa): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
urls_to_download = { | |
"train": os.path.join(_URL, _TRAIN_FILE), | |
"test": os.path.join(_URL, _TEST_FILE), | |
"dev": os.path.join(_URL, _DEV_FILE), | |
} | |
dl_dir = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": dl_dir["train"], "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": dl_dir["test"], "split": "test"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": dl_dir["dev"], "split": "dev"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
# TODO(cosmos_qa): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
if split == "test": | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
yield id_, { | |
"id": data["id"], | |
"context": data["context"], | |
"question": data["question"], | |
"answer0": data["answer0"], | |
"answer1": data["answer1"], | |
"answer2": data["answer2"], | |
"answer3": data["answer3"], | |
"label": int(data.get("label", -1)), | |
} | |
else: | |
data = csv.DictReader(f) | |
for id_, row in enumerate(data): | |
yield id_, { | |
"id": row["id"], | |
"context": row["context"], | |
"question": row["question"], | |
"answer0": row["answer0"], | |
"answer1": row["answer1"], | |
"answer2": row["answer2"], | |
"answer3": row["answer3"], | |
"label": int(row.get("label", -1)), | |
} | |