# Copyright 2022 Cristóbal Alcázar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rock Glacier dataset with images of the chilean andes.""" import os import datasets from datasets.tasks import ImageClassification _HOMEPAGE = "https://github.com/alcazar90/rock-glacier-detection" _CITATION = """\ @ONLINE {rock-glacier-dataset, author="CMM-Glaciares", title="Rock Glacier Dataset", month="October", year="2022", url="https://github.com/alcazar90/rock-glacier-detection" } """ _DESCRIPTION = """\ TODO: Add a description... """ _MASKS_URLS = ["https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/glaciar_masks_trainset.zip"] _URLS = { "train": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/train.zip", "validation": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/validation.zip" } _NAMES = ["glaciar", "cordillera"] class RockGlacierConfig(datasets.BuilderConfig): """Rock Glacier dataset configuration""" def __init__(self, name, **kwargs): super(RockGlacierConfig).__init__( version=datasets.Version("1.0.0"), name=name, description="Rock Glacier Dataset", **kwargs, ) class RockGlacierDataset(datasets.GeneratorBasedBuilder): """Rock Glacier images dataset.""" BUILDER_CONFIGS = [ RockGlacierConfig("image-classification"), RockGlacierConfig("image-segmentation"), ] def _info(self): if self.config.name == "image-classification": features = dataset.Features({ "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), }) keys = ("image", "labels") task = [ImageClassification(image_column="image", label_column="labels")] if self.config.name == "image-segmentation": pass return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=task, ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dl_manager.iter_files([data_files["train"]]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": dl_manager.iter_files([data_files["validation"]]), }, ), ] def _generate_examples(self, files): if selg.config.name == "image-classification": for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".png"): yield i, { "image": path, "labels": os.path.basename(os.path.dirname(path)).lower(), }