Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1K<n<10K
License:
# Copyright 2022 Cristóbal Alcázar | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Rock Glacier dataset with images of the chilean andes.""" | |
import os | |
import re | |
import datasets | |
from datasets.tasks import ImageClassification | |
datasets.logging.set_verbosity_info() | |
logger = datasets.logging.get_logger(__name__) | |
_HOMEPAGE = "https://github.com/alcazar90/rock-glacier-detection" | |
_CITATION = """\ | |
@ONLINE {rock-glacier-dataset, | |
author="CMM-Glaciares", | |
title="Rock Glacier Dataset", | |
month="October", | |
year="2022", | |
url="https://github.com/alcazar90/rock-glacier-detection" | |
} | |
""" | |
_DESCRIPTION = """\ | |
TODO: Add a description... | |
""" | |
_URLS = { | |
"train": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/train.zip", | |
"validation": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/validation.zip", | |
"train_mask": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/glaciar_masks_trainset.zip", | |
} | |
_NAMES = ["glaciar", "cordillera"] | |
class RockGlacierConfig(datasets.BuilderConfig): | |
def __init__(self, name, **kwargs): | |
super(RockGlacierConfig, self).__init__( | |
version=datasets.Version("1.0.0"), | |
name=name, | |
description="Rock Glacier Dataset", | |
**kwargs, | |
) | |
class RockGlacierDataset(datasets.GeneratorBasedBuilder): | |
"""Rock Glacier images dataset.""" | |
BUILDER_CONFIGS = [ | |
RockGlacierConfig("image-classification"), | |
RockGlacierConfig("image-segmentation"), | |
] | |
def _info(self): | |
if self.config.name == "image-classification": | |
features = datasets.Features({ | |
"image": datasets.Image(), | |
"labels": datasets.features.ClassLabel(names=_NAMES), | |
}) | |
keys = ("image", "labels") | |
if self.config.name == "image-segmentation": | |
features = datasets.Features({ | |
"image": datasets.Image(), | |
"labels": datasets.Image(), | |
}) | |
keys = ("image", "labels") | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=keys, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_files = dl_manager.download_and_extract(_URLS) | |
if self.config.name == "image-classification": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["train"]]), | |
"split": "training", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["validation"]]), | |
"split": "validation", | |
}, | |
), | |
] | |
if self.config.name == "image-segmentation": | |
train_data = dl_manager.iter_files([data_files["train"]]), dl_manager.iter_files([data_files["train_mask"]]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"files": train_data, | |
"split": "training", | |
}, | |
)] | |
def _generate_examples(self, files, split): | |
if self.config.name == "image-classification": | |
for i, path in enumerate(files): | |
file_name = os.path.basename(path) | |
if file_name.endswith(".png"): | |
yield i, { | |
"image": path, | |
"labels": os.path.basename(os.path.dirname(path)).lower(), | |
} | |
if self.config.name == "image-segmentation": | |
if split == "training": | |
images, masks = files | |
imageId2mask = {} | |
# iterate trought masks | |
for mask_path in masks: | |
mask_id = re.search('\d+', mask_path).group(0) | |
imageId2mask[mask_id] = mask_path | |
logger.info(f"imageId2mask check paths: {imageId2mask}") | |
for i, path in enumerate(files): | |
file_name = os.path.basename(path) | |
if file_name.endswith(".png"): | |
yield i, { | |
"image": path, | |
"labels": imageId2mask[re.search('\d+', file_name).group(0)] | |
} | |