File size: 5,680 Bytes
9ed8bd3
02f13e0
 
9ed8bd3
02f13e0
 
 
9ed8bd3
 
7037e39
 
02f13e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7037e39
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
be53bad
02f13e0
 
 
 
7037e39
 
 
be53bad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672a6bf
 
cdc240e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
language:
- nl
license: other
task_categories:
- token-classification
pretty_name: Dutch Archaeology NER Dataset
license_name: hippocratic-license-3.0
license_link: https://firstdonoharm.dev/version/3/0/full.md
dataset_info:
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-ART
          '2': I-ART
          '3': B-CON
          '4': I-CON
          '5': B-LOC
          '6': I-LOC
          '7': B-MAT
          '8': I-MAT
          '9': B-PER
          '10': I-PER
          '11': B-SPE
          '12': I-SPE
  splits:
  - name: fold1_train
    num_bytes: 4490700
    num_examples: 22150
  - name: fold1_validation
    num_bytes: 1579488
    num_examples: 5852
  - name: fold1_test
    num_bytes: 1574291
    num_examples: 5750
  - name: fold2_train
    num_bytes: 4685070
    num_examples: 22465
  - name: fold2_validation
    num_bytes: 1379777
    num_examples: 5431
  - name: fold2_test
    num_bytes: 1579700
    num_examples: 5865
  - name: fold3_train
    num_bytes: 4762905
    num_examples: 19560
  - name: fold3_validation
    num_bytes: 1501653
    num_examples: 8757
  - name: fold3_test
    num_bytes: 1379769
    num_examples: 5427
  - name: fold4_train
    num_bytes: 4533412
    num_examples: 17029
  - name: fold4_validation
    num_bytes: 1609278
    num_examples: 7963
  - name: fold4_test
    num_bytes: 1501649
    num_examples: 8755
  - name: fold5_train
    num_bytes: 4460910
    num_examples: 20039
  - name: fold5_validation
    num_bytes: 1574155
    num_examples: 5747
  - name: fold5_test
    num_bytes: 1609342
    num_examples: 7965
  download_size: 7478347
  dataset_size: 38222099
configs:
- config_name: default
  data_files:
  - split: fold1_train
    path: data/fold1_train-*
  - split: fold1_validation
    path: data/fold1_validation-*
  - split: fold1_test
    path: data/fold1_test-*
  - split: fold2_train
    path: data/fold2_train-*
  - split: fold2_validation
    path: data/fold2_validation-*
  - split: fold2_test
    path: data/fold2_test-*
  - split: fold3_train
    path: data/fold3_train-*
  - split: fold3_validation
    path: data/fold3_validation-*
  - split: fold3_test
    path: data/fold3_test-*
  - split: fold4_train
    path: data/fold4_train-*
  - split: fold4_validation
    path: data/fold4_validation-*
  - split: fold4_test
    path: data/fold4_test-*
  - split: fold5_train
    path: data/fold5_train-*
  - split: fold5_validation
    path: data/fold5_validation-*
  - split: fold5_test
    path: data/fold5_test-*
tags:
- archaeology
---

# Dutch Archaeology NER Dataset

A selection of Dutch archaeology field reports, annotated by archaeology students from Leiden University. 

## Labels

The following labels are included:

- ART, artefacts ('bijl', 'pijlpunt')
- MAT, materials ('vuursteen', 'ijzer')
- PER, time periods ('Middeleeuwen', '400 v. Chr.')
- CON, archaeological contexts ('greppel','beerput')
- LOC, locations ('Amsterdam', 'Oss')
- SPE, species ('Betula nana', 'koe')

## Folds

The reason I supply 5 folds is because I get wildly different F1 scores between folds, and because it's important to keep whole documents in folds: these are long documents, any document that's split between train and test instantly leads to a higher F1, as the model starts recognising specific tokens as entities, leading to overfitting. A micro average F1 over 5 folds with no split documents seems like the fairest evaluation, closest to real-world inference.

### Citation Information

```
@inproceedings{brandsen-etal-2020-creating,
    title = "Creating a Dataset for Named Entity Recognition in the Archaeology Domain",
    author = "Brandsen, Alex  and
      Verberne, Suzan  and
      Wansleeben, Milco  and
      Lambers, Karsten",
    editor = "Calzolari, Nicoletta  and
      B{\'e}chet, Fr{\'e}d{\'e}ric  and
      Blache, Philippe  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\'e}l{\`e}ne  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2020.lrec-1.562",
    pages = "4573--4577",
    abstract = "In this paper, we present the development of a training dataset for Dutch Named Entity Recognition (NER) in the archaeology domain. This dataset was created as there is a dire need for semantic search within archaeology, in order to allow archaeologists to find structured information in collections of Dutch excavation reports, currently totalling around 60,000 (658 million words) and growing rapidly. To guide this search task, NER is needed. We created rigorous annotation guidelines in an iterative process, then instructed five archaeology students to annotate a number of documents. The resulting dataset contains {\textasciitilde}31k annotations between six entity types (artefact, time period, place, context, species {\&} material). The inter-annotator agreement is 0.95, and when we used this data for machine learning, we observed an increase in F1 score from 0.51 to 0.70 in comparison to a machine learning model trained on a dataset created in prior work. This indicates that the data is of high quality, and can confidently be used to train NER classifiers.",
    language = "English",
    ISBN = "979-10-95546-34-4",
}

```