File size: 87,750 Bytes
7ecda5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
import conllu

import datasets


_CITATION = """\
@misc{11234/1-3424,
title = {Universal Dependencies 2.7},
author = {Zeman, Daniel and Nivre, Joakim and Abrams, Mitchell and Ackermann, Elia and Aepli, No{\"e}mi and Aghaei, Hamid and Agi{\'c}, {\v Z}eljko and Ahmadi, Amir and Ahrenberg, Lars and Ajede, Chika Kennedy and Aleksandravi{\v c}i{\=u}t{\.e}, Gabriel{\.e} and Alfina, Ika and Antonsen, Lene and Aplonova, Katya and Aquino, Angelina and Aragon, Carolina and Aranzabe, Maria Jesus and Arnard{\'o}ttir, {\t H}{\'o}runn and Arutie, Gashaw and Arwidarasti, Jessica Naraiswari and Asahara, Masayuki and Ateyah, Luma and Atmaca, Furkan and Attia, Mohammed and Atutxa, Aitziber and Augustinus, Liesbeth and Badmaeva, Elena and Balasubramani, Keerthana and Ballesteros, Miguel and Banerjee, Esha and Bank, Sebastian and Barbu Mititelu, Verginica and Basmov, Victoria and Batchelor, Colin and Bauer, John and Bedir, Seyyit Talha and Bengoetxea, Kepa and Berk, G{\"o}zde and Berzak, Yevgeni and Bhat, Irshad Ahmad and Bhat, Riyaz Ahmad and Biagetti, Erica and Bick, Eckhard and Bielinskien{\.e}, Agn{\.e} and Bjarnad{\'o}ttir, Krist{\'{\i}}n and Blokland, Rogier and Bobicev, Victoria and Boizou, Lo{\"{\i}}c and Borges V{\"o}lker, Emanuel and B{\"o}rstell, Carl and Bosco, Cristina and Bouma, Gosse and Bowman, Sam and Boyd, Adriane and Brokait{\.e}, Kristina and Burchardt, Aljoscha and Candito, Marie and Caron, Bernard and Caron, Gauthier and Cavalcanti, Tatiana and Cebiroglu Eryigit, Gulsen and Cecchini, Flavio Massimiliano and Celano, Giuseppe G. A. and Ceplo, Slavomir and Cetin, Savas and Cetinoglu, Ozlem and Chalub, Fabricio and Chi, Ethan and Cho, Yongseok and Choi, Jinho and Chun, Jayeol and Cignarella, Alessandra T. and Cinkova, Silvie and Collomb, Aurelie and Coltekin, Cagr{\i} and Connor, Miriam and Courtin, Marine and Davidson, Elizabeth and de Marneffe, Marie-Catherine and de Paiva, Valeria and Derin, Mehmet Oguz and de Souza, Elvis and Diaz de Ilarraza, Arantza and Dickerson, Carly and Dinakaramani, Arawinda and Dione, Bamba and Dirix, Peter and Dobrovoljc, Kaja and Dozat, Timothy and Droganova, Kira and Dwivedi, Puneet and Eckhoff, Hanne and Eli, Marhaba and Elkahky, Ali and Ephrem, Binyam and Erina, Olga and Erjavec, Tomaz and Etienne, Aline and Evelyn, Wograine and Facundes, Sidney and Farkas, Rich{\'a}rd and Fernanda, Mar{\'{\i}}lia and Fernandez Alcalde, Hector and Foster, Jennifer and Freitas, Cl{\'a}udia and Fujita, Kazunori and Gajdosov{\'a}, Katar{\'{\i}}na and Galbraith, Daniel and Garcia, Marcos and G{\"a}rdenfors, Moa and Garza, Sebastian and Gerardi, Fabr{\'{\i}}cio Ferraz and Gerdes, Kim and Ginter, Filip and Goenaga, Iakes and Gojenola, Koldo and G{\"o}k{\i}rmak, Memduh and Goldberg, Yoav and G{\'o}mez Guinovart, Xavier and Gonz{\'a}lez Saavedra,
Berta and Grici{\=u}t{\.e}, Bernadeta and Grioni, Matias and Grobol, Lo{\"{\i}}c and Gr{\=u}z{\={\i}}tis, Normunds and Guillaume, Bruno and Guillot-Barbance, C{\'e}line and G{\"u}ng{\"o}r, Tunga and Habash, Nizar and Hafsteinsson, Hinrik and Haji{\v c}, Jan and Haji{\v c} jr., Jan and H{\"a}m{\"a}l{\"a}inen, Mika and H{\`a} M{\~y}, Linh and Han, Na-Rae and Hanifmuti, Muhammad Yudistira and Hardwick, Sam and Harris, Kim and Haug, Dag and Heinecke, Johannes and Hellwig, Oliver and Hennig, Felix and Hladk{\'a}, Barbora and Hlav{\'a}{\v c}ov{\'a}, Jaroslava and Hociung, Florinel and Hohle, Petter and Huber, Eva and Hwang, Jena and Ikeda, Takumi and Ingason, Anton Karl and Ion, Radu and Irimia, Elena and Ishola, {\d O}l{\'a}j{\'{\i}}d{\'e} and Jel{\'{\i}}nek, Tom{\'a}{\v s} and Johannsen, Anders and J{\'o}nsd{\'o}ttir, Hildur and J{\o}rgensen, Fredrik and Juutinen, Markus and K, Sarveswaran and Ka{\c s}{\i}kara, H{\"u}ner and Kaasen, Andre and Kabaeva, Nadezhda and Kahane, Sylvain and Kanayama, Hiroshi and Kanerva, Jenna and Katz, Boris and Kayadelen, Tolga and Kenney, Jessica and Kettnerov{\'a}, V{\'a}clava and Kirchner, Jesse and Klementieva, Elena and K{\"o}hn, Arne and K{\"o}ksal, Abdullatif and Kopacewicz, Kamil and Korkiakangas, Timo and Kotsyba, Natalia and Kovalevskait{\.e}, Jolanta and Krek, Simon and Krishnamurthy, Parameswari and Kwak, Sookyoung and Laippala, Veronika and Lam, Lucia and Lambertino, Lorenzo and Lando, Tatiana and Larasati, Septina Dian and Lavrentiev, Alexei and Lee, John and L{\^e} H{\`{\^o}}ng, Phương and Lenci, Alessandro and Lertpradit, Saran and Leung, Herman and Levina, Maria and Li, Cheuk Ying and Li, Josie and Li, Keying and Li, Yuan and Lim, {KyungTae} and Linden, Krister and Ljubesic, Nikola and Loginova, Olga and Luthfi, Andry and Luukko, Mikko and Lyashevskaya, Olga and Lynn, Teresa and Macketanz, Vivien and Makazhanov, Aibek and Mandl, Michael and Manning, Christopher and Manurung, Ruli and Maranduc, Catalina and Marcek, David and Marheinecke, Katrin and Mart{\'{\i}}nez Alonso, H{\'e}ctor and Martins, Andr{\'e} and Masek, Jan and Matsuda, Hiroshi and Matsumoto, Yuji and {McDonald}, Ryan and {McGuinness}, Sarah and Mendonca, Gustavo and Miekka, Niko and Mischenkova, Karina and Misirpashayeva, Margarita and Missil{\"a}, Anna and Mititelu, Catalin and Mitrofan, Maria and Miyao, Yusuke and Mojiri Foroushani, {AmirHossein} and Moloodi, Amirsaeid and Montemagni, Simonetta and More, Amir and Moreno Romero, Laura and Mori, Keiko Sophie and Mori, Shinsuke and Morioka, Tomohiko and Moro, Shigeki and Mortensen, Bjartur and Moskalevskyi, Bohdan and Muischnek, Kadri and Munro, Robert and Murawaki, Yugo and M{\"u}{\"u}risep, Kaili and Nainwani, Pinkey and Nakhl{\'e}, Mariam and Navarro Hor{\~n}iacek, Juan Ignacio and Nedoluzhko,
Anna and Ne{\v s}pore-B{\=e}rzkalne, Gunta and Nguy{\~{\^e}}n Th{\d i}, Lương and Nguy{\~{\^e}}n Th{\d i} Minh, Huy{\`{\^e}}n and Nikaido, Yoshihiro and Nikolaev, Vitaly and Nitisaroj, Rattima and Nourian, Alireza and Nurmi, Hanna and Ojala, Stina and Ojha, Atul Kr. and Ol{\'u}{\`o}kun, Ad{\'e}day{\d o}̀ and Omura, Mai and Onwuegbuzia, Emeka and Osenova, Petya and {\"O}stling, Robert and {\O}vrelid, Lilja and {\"O}zate{\c s}, {\c S}aziye Bet{\"u}l and {\"O}zg{\"u}r, Arzucan and {\"O}zt{\"u}rk Ba{\c s}aran, Balk{\i}z and Partanen, Niko and Pascual, Elena and Passarotti, Marco and Patejuk, Agnieszka and Paulino-Passos, Guilherme and Peljak-{\L}api{\'n}ska, Angelika and Peng, Siyao and Perez, Cenel-Augusto and Perkova, Natalia and Perrier, Guy and Petrov, Slav and Petrova, Daria and Phelan, Jason and Piitulainen, Jussi and Pirinen, Tommi A and Pitler, Emily and Plank, Barbara and Poibeau, Thierry and Ponomareva, Larisa and Popel, Martin and Pretkalnina, Lauma and Pr{\'e}vost, Sophie and Prokopidis, Prokopis and Przepi{\'o}rkowski, Adam and Puolakainen, Tiina and Pyysalo, Sampo and Qi, Peng and R{\"a}{\"a}bis, Andriela and Rademaker, Alexandre and Rama, Taraka and Ramasamy, Loganathan and Ramisch, Carlos and Rashel, Fam and Rasooli, Mohammad Sadegh and Ravishankar, Vinit and Real, Livy and Rebeja, Petru and Reddy, Siva and Rehm, Georg and Riabov, Ivan and Rie{\ss}ler, Michael and Rimkut{\.e}, Erika and Rinaldi, Larissa and Rituma, Laura and Rocha, Luisa and R{\"o}gnvaldsson, Eir{\'{\i}}kur and Romanenko, Mykhailo and Rosa, Rudolf and Roșca, Valentin and Rovati, Davide and Rudina, Olga and Rueter, Jack and R{\'u}narsson, Kristjan and Sadde, Shoval and Safari, Pegah and Sagot, Benoit and Sahala, Aleksi and Saleh, Shadi and Salomoni, Alessio and Samardzi{\'c}, Tanja and Samson, Stephanie and Sanguinetti, Manuela and S{\"a}rg,
Dage and Saul{\={\i}}te, Baiba and Sawanakunanon, Yanin and Scannell, Kevin and Scarlata, Salvatore and Schneider, Nathan and Schuster, Sebastian and Seddah, Djam{\'e} and Seeker, Wolfgang and Seraji, Mojgan and Shen, Mo and Shimada, Atsuko and Shirasu, Hiroyuki and Shohibussirri, Muh and Sichinava, Dmitry and Sigurðsson, Einar Freyr and Silveira, Aline and Silveira, Natalia and Simi, Maria and Simionescu, Radu and Simk{\'o}, Katalin and {\v S}imkov{\'a}, M{\'a}ria and Simov, Kiril and Skachedubova, Maria and Smith, Aaron and Soares-Bastos, Isabela and Spadine, Carolyn and Steingr{\'{\i}}msson, Stein{\t h}{\'o}r and Stella, Antonio and Straka, Milan and Strickland, Emmett and Strnadov{\'a}, Jana and Suhr, Alane and Sulestio, Yogi Lesmana and Sulubacak, Umut and Suzuki, Shingo and Sz{\'a}nt{\'o}, Zsolt and Taji, Dima and Takahashi, Yuta and Tamburini, Fabio and Tan, Mary Ann C. and Tanaka, Takaaki and Tella, Samson and Tellier, Isabelle and Thomas, Guillaume and Torga, Liisi and Toska, Marsida and Trosterud, Trond and Trukhina, Anna and Tsarfaty, Reut and T{\"u}rk, Utku and Tyers, Francis and Uematsu, Sumire and Untilov, Roman and Uresov{\'a}, Zdenka and Uria, Larraitz and Uszkoreit, Hans and Utka, Andrius and Vajjala, Sowmya and van Niekerk, Daniel and van Noord, Gertjan and Varga, Viktor and Villemonte de la Clergerie, Eric and Vincze, Veronika and Wakasa, Aya and Wallenberg, Joel C. and Wallin, Lars and Walsh, Abigail and Wang, Jing Xian and Washington, Jonathan North and Wendt, Maximilan and Widmer, Paul and Williams, Seyi and Wir{\'e}n, Mats and Wittern, Christian and Woldemariam, Tsegay and Wong, Tak-sum and Wr{\'o}blewska, Alina and Yako, Mary and Yamashita, Kayo and Yamazaki, Naoki and Yan, Chunxiao and Yasuoka, Koichi and Yavrumyan, Marat M. and Yu, Zhuoran and Zabokrtsk{\'y}, Zdenek and Zahra, Shorouq and Zeldes, Amir and Zhu, Hanzhi and Zhuravleva, Anna},
url = {http://hdl.handle.net/11234/1-3424},
note = {{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University},
copyright = {Licence Universal Dependencies v2.7},
year = {2020} }
"""  # noqa: W605

_DESCRIPTION = """\
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
"""

_NAMES = [
    "af_afribooms",
    "akk_pisandub",
    "akk_riao",
    "aqz_tudet",
    "sq_tsa",
    "am_att",
    "grc_perseus",
    "grc_proiel",
    "apu_ufpa",
    "ar_nyuad",
    "ar_padt",
    "ar_pud",
    "hy_armtdp",
    "aii_as",
    "bm_crb",
    "eu_bdt",
    "be_hse",
    "bho_bhtb",
    "br_keb",
    "bg_btb",
    "bxr_bdt",
    "yue_hk",
    "ca_ancora",
    "zh_cfl",
    "zh_gsd",
    "zh_gsdsimp",
    "zh_hk",
    "zh_pud",
    "ckt_hse",
    "lzh_kyoto",
    "cop_scriptorium",
    "hr_set",
    "cs_cac",
    "cs_cltt",
    "cs_fictree",
    "cs_pdt",
    "cs_pud",
    "da_ddt",
    "nl_alpino",
    "nl_lassysmall",
    "en_esl",
    "en_ewt",
    "en_gum",
    "en_gumreddit",
    "en_lines",
    "en_partut",
    "en_pronouns",
    "en_pud",
    "myv_jr",
    "et_edt",
    "et_ewt",
    "fo_farpahc",
    "fo_oft",
    "fi_ftb",
    "fi_ood",
    "fi_pud",
    "fi_tdt",
    "fr_fqb",
    "fr_ftb",
    "fr_gsd",
    "fr_partut",
    "fr_pud",
    "fr_sequoia",
    "fr_spoken",
    "gl_ctg",
    "gl_treegal",
    "de_gsd",
    "de_hdt",
    "de_lit",
    "de_pud",
    "got_proiel",
    "el_gdt",
    "he_htb",
    "qhe_hiencs",
    "hi_hdtb",
    "hi_pud",
    "hu_szeged",
    "is_icepahc",
    "is_pud",
    "id_csui",
    "id_gsd",
    "id_pud",
    "ga_idt",
    "it_isdt",
    "it_partut",
    "it_postwita",
    "it_pud",
    "it_twittiro",
    "it_vit",
    "ja_bccwj",
    "ja_gsd",
    "ja_modern",
    "ja_pud",
    "krl_kkpp",
    "kk_ktb",
    "kfm_aha",
    "koi_uh",
    "kpv_ikdp",
    "kpv_lattice",
    "ko_gsd",
    "ko_kaist",
    "ko_pud",
    "kmr_mg",
    "la_ittb",
    "la_llct",
    "la_perseus",
    "la_proiel",
    "lv_lvtb",
    "lt_alksnis",
    "lt_hse",
    "olo_kkpp",
    "mt_mudt",
    "gv_cadhan",
    "mr_ufal",
    "gun_dooley",
    "gun_thomas",
    "mdf_jr",
    "myu_tudet",
    "pcm_nsc",
    "nyq_aha",
    "sme_giella",
    "no_bokmaal",
    "no_nynorsk",
    "no_nynorsklia",
    "cu_proiel",
    "fro_srcmf",
    "orv_rnc",
    "orv_torot",
    "otk_tonqq",
    "fa_perdt",
    "fa_seraji",
    "pl_lfg",
    "pl_pdb",
    "pl_pud",
    "pt_bosque",
    "pt_gsd",
    "pt_pud",
    "ro_nonstandard",
    "ro_rrt",
    "ro_simonero",
    "ru_gsd",
    "ru_pud",
    "ru_syntagrus",
    "ru_taiga",
    "sa_ufal",
    "sa_vedic",
    "gd_arcosg",
    "sr_set",
    "sms_giellagas",
    "sk_snk",
    "sl_ssj",
    "sl_sst",
    "soj_aha",
    "ajp_madar",
    "es_ancora",
    "es_gsd",
    "es_pud",
    "swl_sslc",
    "sv_lines",
    "sv_pud",
    "sv_talbanken",
    "gsw_uzh",
    "tl_trg",
    "tl_ugnayan",
    "ta_mwtt",
    "ta_ttb",
    "te_mtg",
    "th_pud",
    "tpn_tudet",
    "qtd_sagt",
    "tr_boun",
    "tr_gb",
    "tr_imst",
    "tr_pud",
    "uk_iu",
    "hsb_ufal",
    "ur_udtb",
    "ug_udt",
    "vi_vtb",
    "wbp_ufal",
    "cy_ccg",
    "wo_wtb",
    "yo_ytb",
]

_DESCRIPTIONS = {
    "af_afribooms": "UD Afrikaans-AfriBooms is a conversion of the AfriBooms Dependency Treebank, originally annotated with a simplified PoS set and dependency relations according to a subset of the Stanford tag set. The corpus consists of public government documents. The dataset was proposed in 'AfriBooms: An Online Treebank for Afrikaans' by Augustinus et al. (2016); https://www.aclweb.org/anthology/L16-1107.pdf.",
    "akk_pisandub": "A small set of sentences from Babylonian royal inscriptions.",
    "akk_riao": "UD_Akkadian-RIAO is a small treebank which consists of 22 277 words and 1845 sentences. This represents an intact subset of a total of 2211 sentences from the early Neo-Assyrian royal inscriptions  of the tenth and ninth centuries BCE. These royal inscriptions were extracted from Oracc (Open Richly Annotated Cuneiform Corpus; http://oracc.museum.upenn.edu/riao/), where all Neo-Assyrian royal inscriptions are lemmatized word-for-word. The language of the corpus is Standard Babylonian, with occasional Assyrianisms, whereas “Akkadian” is the umbrella term for both Assyrian and Babylonian. The treebank was manually annotated following the UD annotation guidelines.",
    "aqz_tudet": "UD_Akuntsu-TuDeT is a collection of annotated texts in Akuntsú. Together with UD_Tupinamba-TuDeT and UD_Munduruku-TuDeT, UD_Akuntsu-TuDeT is part of the TuLaR project.  The sentences are being annotated by Carolina Aragon and Fabrício Ferraz Gerardi.",
    "sq_tsa": "The UD Treebank for Standard Albanian (TSA) is a small treebank that consists of 60 sentences corresponding to 922 tokens. The data was collected from different Wikipedia entries. This treebank was created mainly manually following the Universal Dependencies guidelines. The lemmatization was performed using the lemmatizer https://bitbucket.org/timarkh/uniparser-albanian-grammar/src/master/ developed by the Albanian National Corpus team (Maria Morozova, Alexander Rusakov, Timofey Arkhangelskiy). Tagging and Morphological Analysis were semi-automated through python scripts and corrected manually, whereas Dependency relations were assigned fully manually. We encourage any initiatives to increase the size and/or improve the overall quality of the Treebank.",
    "am_att": "UD_Amharic-ATT is a manually annotated Treebanks. It is annotated for POS tag, morphological information and dependency relations. Since Amharic is a morphologically-rich, pro-drop, and languages having a feature of clitic doubling, clitics have been segmented manually.",
    "grc_perseus": "This Universal Dependencies Ancient Greek Treebank consists of an automatic conversion of a selection of passages from the Ancient Greek and Latin Dependency Treebank 2.1",
    "grc_proiel": "The Ancient Greek PROIEL treebank is based on the Ancient Greek data from the PROIEL treebank, which is maintained at the Department of Philosophy, Classics, History of Arts and Ideas at the University of Oslo. The conversion is based on the 20180408 release of the PROIEL treebank available from https://github.com/proiel/proiel-treebank/releases. The original annotators are acknowledged in the files available there. The conversion code is available in the Rubygem proiel-cli, https://github.com/proiel/proiel-cli.",
    "apu_ufpa": "The initial release contains 70 annotated sentences. This is the first treebank in a language from the Arawak family. The original interlinear glosses are included in the tree bank, and their conversion into a full UD annotation is an ongoing process. The sent_id values (e.g.: FernandaM2017:Texto-6-19) are representative of the collector, year of publication, text identifier and the number of the sentence in order from the original text.",
    "ar_nyuad": "The treebank consists of 19,738 sentences (738889 tokens), and its domain is mainly newswire. The annotation is licensed under the terms of CC BY-SA 4.0, and the original PATB can be obtained from the LDC’s official website.",
    "ar_padt": "The Arabic-PADT UD treebank is based on the Prague Arabic Dependency Treebank (PADT), created at the Charles University in Prague.",
    "ar_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "hy_armtdp": "UD_Armenian-ArmTDP is based on the ՀայՇտեմ-ArmTDP-East dataset (version 2.0), a mix of random sentences sampled from different sources and representing different genres and domains, released in several formats (local on-line newspaper and journal articles, contemporary fiction dated between 1976 and 2019). The treebank consists 2502 sentences (~53K tokens).",
    "aii_as": "The Uppsala Assyrian Treebank is a small treebank for Modern Standard Assyrian. The corpus is collected and annotated manually. The data was randomly collected from different textbooks and a short translation of The Merchant of Venice.",
    "bm_crb": "The UD Bambara treebank is a section of the Corpus Référence du Bambara annotated natively with Universal Dependencies.",
    "eu_bdt": "The Basque UD treebank is based on a automatic conversion from part of the Basque Dependency Treebank (BDT), created at the University of of the Basque Country by the IXA NLP research group. The treebank consists of 8.993 sentences (121.443 tokens) and covers mainly literary and journalistic texts.",
    "be_hse": "The Belarusian UD treebank is based on a sample of the news texts included in the Belarusian-Russian parallel subcorpus of the Russian National Corpus, online search available at: http://ruscorpora.ru/search-para-be.html.",
    "bho_bhtb": "The Bhojpuri UD Treebank (BHTB) v2.6 consists of 6,664 tokens(357 sentences). This Treebank is a part of the Universal Dependency treebank project. Initially, it was initiated by me (Atul) at Jawaharlal Nehru University, New Delhi during the doctoral research work. BHTB data contains syntactic annotation according to dependency-constituency schema, as well as morphological tags and lemmas. In this data, XPOS is annotated  according to Bureau of Indian Standards (BIS) Part Of Speech (POS) tagset.",
    "br_keb": "UD Breton-KEB is a treebank of Breton that has been manually annotated according to the Universal Dependencies guidelines. The tokenisation guidelines and morphological annotation comes from a finite-state morphological analyser of Breton released as part of the Apertium project.",
    "bg_btb": "UD_Bulgarian-BTB is based on the HPSG-based BulTreeBank, created at the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences. The original consists of 215,000 tokens (over 15,000 sentences).",
    "bxr_bdt": "The UD Buryat treebank was annotated manually natively in UD and contains grammar book sentences, along with news and some fiction.",
    "yue_hk": "A Cantonese treebank (in Traditional Chinese characters) of film subtitles and of legislative proceedings of Hong Kong, parallel with the Chinese-HK treebank.",
    "ca_ancora": "Catalan data from the AnCora corpus.",
    "zh_cfl": "The Chinese-CFL UD treebank is manually annotated by Keying Li with minor manual revisions by Herman Leung and John Lee at City University of Hong Kong, based on essays written by learners of Mandarin Chinese as a foreign language. The data is in Simplified Chinese.",
    "zh_gsd": "Traditional Chinese Universal Dependencies Treebank annotated and converted by Google.",
    "zh_gsdsimp": "Simplified Chinese Universal Dependencies dataset converted from the GSD (traditional) dataset with manual corrections.",
    "zh_hk": "A Traditional Chinese treebank of film subtitles and of legislative proceedings of Hong Kong, parallel with the Cantonese-HK treebank.",
    "zh_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "ckt_hse": "This data is a manual annotation of the corpus from multimedia annotated corpus of the Chuklang project, a dialectal corpus of the Amguema variant of Chukchi.",
    "lzh_kyoto": "Classical Chinese Universal Dependencies Treebank annotated and converted by Institute for Research in Humanities, Kyoto University.",
    "cop_scriptorium": "UD Coptic contains manually annotated Sahidic Coptic texts, including Biblical texts, sermons, letters, and hagiography.",
    "hr_set": "The Croatian UD treebank is based on the extension of the SETimes-HR corpus, the hr500k corpus.",
    "cs_cac": "The UD_Czech-CAC treebank is based on the Czech Academic Corpus 2.0 (CAC; Český akademický korpus; ČAK), created at Charles University in Prague.",
    "cs_cltt": "The UD_Czech-CLTT treebank is based on the Czech Legal Text Treebank 1.0, created at Charles University in Prague.",
    "cs_fictree": "FicTree is a treebank of Czech fiction, automatically converted into the UD format. The treebank was built at Charles University in Prague.",
    "cs_pdt": "The Czech-PDT UD treebank is based on the Prague Dependency Treebank 3.0 (PDT), created at the Charles University in Prague.",
    "cs_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "da_ddt": "The Danish UD treebank is a conversion of the Danish Dependency Treebank.",
    "nl_alpino": "This corpus consists of samples from various treebanks annotated at the University of Groningen using the Alpino annotation tools and guidelines.",
    "nl_lassysmall": "This corpus contains sentences from the Wikipedia section of the Lassy Small Treebank. Universal Dependency annotation was generated automatically from the original annotation in Lassy.",
    "en_esl": "UD English-ESL / Treebank of Learner English (TLE) contains manual POS tag and dependency annotations for 5,124 English as a Second Language (ESL) sentences drawn from the Cambridge Learner Corpus First Certificate in English (FCE) dataset.",
    "en_ewt": "A Gold Standard Universal Dependencies Corpus for English, built over the source material of the English Web Treebank LDC2012T13 (https://catalog.ldc.upenn.edu/LDC2012T13).",
    "en_gum": "Universal Dependencies syntax annotations from the GUM corpus (https://corpling.uis.georgetown.edu/gum/).",
    "en_gumreddit": "Universal Dependencies syntax annotations from the Reddit portion of the GUM corpus (https://corpling.uis.georgetown.edu/gum/) ",
    "en_lines": "UD English_LinES is the English half of the LinES Parallel Treebank with the original dependency annotation first automatically converted into Universal Dependencies and then partially reviewed. Its contents cover literature, an online manual and Europarl data.",
    "en_partut": "UD_English-ParTUT is a conversion of a multilingual parallel treebank developed at the University of Turin, and consisting of a variety of text genres, including talks, legal texts and Wikipedia articles, among others.",
    "en_pronouns": "UD English-Pronouns is dataset created to make pronoun identification more accurate and with a more balanced distribution across genders. The dataset is initially targeting the Independent Genitive pronouns, 'hers', (independent) 'his', (singular) 'theirs', 'mine', and (singular) 'yours'.",
    "en_pud": "This is the English portion of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies (http://universaldependencies.org/conll17/).",
    "myv_jr": "UD Erzya is the original annotation (CoNLL-U) for texts in the Erzya language, it originally consists of a sample from a number of fiction authors writing originals in Erzya.",
    "et_edt": "UD Estonian is a converted version of the Estonian Dependency Treebank (EDT), originally annotated in the Constraint Grammar (CG) annotation scheme, and consisting of genres of fiction, newspaper texts and scientific texts. The treebank contains 30,972 trees, 437,769 tokens.",
    "et_ewt": "UD EWT treebank consists of different genres of new media. The treebank contains 4,493 trees, 56,399 tokens.",
    "fo_farpahc": "UD_Icelandic-FarPaHC is a conversion of the Faroese Parsed Historical Corpus (FarPaHC) to the Universal Dependencies scheme. The conversion was done using UDConverter.",
    "fo_oft": "This is a treebank of Faroese based on the Faroese Wikipedia.",
    "fi_ftb": "FinnTreeBank 1 consists of manually annotated grammatical examples from VISK. The UD version of FinnTreeBank 1 was converted from a native annotation model with a script and later manually revised.",
    "fi_ood": "Finnish-OOD is an external out-of-domain test set for Finnish-TDT annotated natively into UD scheme.",
    "fi_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "fi_tdt": "UD_Finnish-TDT is based on the Turku Dependency Treebank (TDT), a broad-coverage dependency treebank of general Finnish covering numerous genres. The conversion to UD was followed by extensive manual checks and corrections, and the treebank closely adheres to the UD guidelines.",
    "fr_fqb": "The corpus **UD_French-FQB** is an automatic conversion of the French QuestionBank v1, a corpus entirely made of questions.",
    "fr_ftb": "The Universal Dependency version of the French Treebank (Abeillé et al., 2003), hereafter UD_French-FTB, is a treebank of sentences from the newspaper Le Monde, initially manually annotated with morphological information and phrase-structure and then converted to the Universal Dependencies annotation scheme.",
    "fr_gsd": "The **UD_French-GSD** was converted in 2015 from the content head version of the universal dependency treebank v2.0 (https://github.com/ryanmcd/uni-dep-tb). It is updated since 2015 independently from the previous source.",
    "fr_partut": "UD_French-ParTUT is a conversion of a multilingual parallel treebank developed at the University of Turin, and consisting of a variety of text genres, including talks, legal texts and Wikipedia articles, among others.",
    "fr_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "fr_sequoia": "UD_French-Sequoia is an automatic conversion of the Sequoia Treebank corpus French Sequoia corpus.",
    "fr_spoken": "A Universal Dependencies corpus for spoken French.",
    "gl_ctg": "The Galician UD treebank is based on the automatic parsing of the Galician Technical Corpus (http://sli.uvigo.gal/CTG) created at the University of Vigo by the the TALG NLP research group.",
    "gl_treegal": "The Galician-TreeGal is a treebank for Galician developed at LyS Group (Universidade da Coruña).",
    "de_gsd": "The German UD is converted from the content head version of the universal dependency treebank v2.0 (legacy).",
    "de_hdt": "UD German-HDT is a conversion of the Hamburg Dependency Treebank, created at the University of Hamburg through manual annotation in conjunction with a standard for morphologically and syntactically annotating sentences as well as a constraint-based parser.",
    "de_lit": "This treebank aims at gathering texts of the German literary history. Currently, it hosts Fragments of the early Romanticism, i.e. aphorism-like texts mainly dealing with philosophical issues concerning art, beauty and related topics.",
    "de_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "got_proiel": "The UD Gothic treebank is based on the Gothic data from the PROIEL treebank, and consists of Wulfila's Bible translation.",
    "el_gdt": "The Greek UD treebank (UD_Greek-GDT) is derived from the Greek Dependency Treebank (http://gdt.ilsp.gr), a resource developed and maintained by researchers at the Institute for Language and Speech Processing/Athena R.C. (http://www.ilsp.gr).",
    "he_htb": "A Universal Dependencies Corpus for Hebrew.",
    "qhe_hiencs": "The Hindi-English Code-switching treebank is based on code-switching tweets of Hindi and English multilingual speakers (mostly Indian) on Twitter. The treebank is manually annotated using UD sceheme. The training and evaluations sets were seperately annotated by different annotators using UD v2 and v1 guidelines respectively. The evaluation sets are automatically converted from UD v1 to v2.",
    "hi_hdtb": "The Hindi UD treebank is based on the Hindi Dependency Treebank (HDTB), created at IIIT Hyderabad, India.",
    "hi_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "hu_szeged": "The Hungarian UD treebank is derived from the Szeged Dependency Treebank (Vincze et al. 2010).",
    "is_icepahc": "UD_Icelandic-IcePaHC is a conversion of the Icelandic Parsed Historical Corpus (IcePaHC) to the Universal Dependencies scheme. The conversion was done using UDConverter.",
    "is_pud": "Icelandic-PUD is the Icelandic part of the Parallel Universal Dependencies (PUD) treebanks.",
    "id_csui": "UD Indonesian-CSUI is a conversion from an Indonesian constituency treebank in the Penn Treebank format named Kethu that was also a conversion from a constituency treebank built by Dinakaramani et al. (2015). We named this treebank Indonesian-CSUI, since all the three versions of the treebanks were built at Faculty of Computer Science, Universitas Indonesia.",
    "id_gsd": "The Indonesian UD is converted from the content head version of the universal dependency treebank v2.0 (legacy).",
    "id_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "ga_idt": "A Universal Dependencies 4910-sentence treebank for modern Irish.",
    "it_isdt": "The Italian corpus annotated according to the UD annotation scheme was obtained by conversion from ISDT (Italian Stanford Dependency Treebank), released for the dependency parsing shared task of Evalita-2014 (Bosco et al. 2014).",
    "it_partut": "UD_Italian-ParTUT is a conversion of a multilingual parallel treebank developed at the University of Turin, and consisting of a variety of text genres, including talks, legal texts and Wikipedia articles, among others.",
    "it_postwita": "PoSTWITA-UD is a collection of Italian tweets annotated in Universal Dependencies that can be exploited for the training of NLP systems to enhance their performance on social media texts.",
    "it_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "it_twittiro": "TWITTIRÒ-UD is a collection of ironic Italian tweets annotated in Universal Dependencies. The treebank can be exploited for the training of NLP systems to enhance their performance on social media texts, and in particular, for irony detection purposes.",
    "it_vit": "The UD_Italian-VIT corpus was obtained by conversion from VIT (Venice Italian Treebank), developed at the Laboratory of Computational Linguistics of the Università Ca' Foscari in Venice (Delmonte et al. 2007; Delmonte 2009; http://rondelmo.it/resource/VIT/Browser-VIT/index.htm).",
    "ja_bccwj": "This Universal Dependencies (UD) Japanese treebank is based on the definition of UD Japanese convention described in the UD documentation. The original sentences are from `Balanced Corpus of Contemporary Written Japanese'(BCCWJ).",
    "ja_gsd": "This Universal Dependencies (UD) Japanese treebank is based on the definition of UD Japanese convention described in the UD documentation.  The original sentences are from Google UDT 2.0.",
    "ja_modern": "This Universal Dependencies (UD) Japanese treebank is based on the definition of UD Japanese convention described in the UD documentation. The original sentences are from `Corpus of Historical Japanese' (CHJ).",
    "ja_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the [CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies](http://universaldependencies.org/conll17/).",
    "krl_kkpp": "UD Karelian-KKPP is a manually annotated new corpus of Karelian made in Universal dependencies annotation scheme. The data is collected from VepKar corpora and consists of mostly modern news texts but also some stories and educational texts.",
    "kk_ktb": "The UD Kazakh treebank is a combination of text from various sources including Wikipedia, some folk tales, sentences from the UDHR, news and phrasebook sentences. Sentences IDs include partial document identifiers.",
    "kfm_aha": "The AHA Khunsari Treebank is a small treebank for contemporary Khunsari. Its corpus is collected and annotated manually. We have prepared this treebank based on interviews with Khunsari speakers.",
    "koi_uh": "This is a Komi-Permyak literary language treebank consisting of original and translated texts.",
    "kpv_ikdp": "This treebank consists of dialectal transcriptions of spoken Komi-Zyrian. The current texts are short recorded segments from different areas where the Iźva dialect of Komi language is spoken.",
    "kpv_lattice": "UD Komi-Zyrian Lattice is a treebank of written standard Komi-Zyrian.",
    "ko_gsd": "The Google Korean Universal Dependency Treebank is first converted from the Universal Dependency Treebank v2.0 (legacy), and then enhanced by Chun et al., 2018.",
    "ko_kaist": "The KAIST Korean Universal Dependency Treebank is generated by Chun et al., 2018 from the constituency trees in the KAIST Tree-Tagging Corpus.",
    "ko_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "kmr_mg": "The UD Kurmanji corpus is a corpus of Kurmanji Kurdish. It contains fiction and encyclopaedic texts in roughly equal measure. It has been annotated natively in accordance with the UD annotation scheme.",
    "la_ittb": "Latin data from the _Index Thomisticus_ Treebank. Data are taken from the _Index Thomisticus_ corpus by Roberto Busa SJ, which contains the complete work by Thomas Aquinas (1225–1274; Medieval Latin) and by 61 other authors related to Thomas.",
    "la_llct": "This Universal Dependencies version of the LLCT (Late Latin Charter Treebank) consists of an automated conversion of the LLCT2 treebank from the Latin Dependency Treebank (LDT) format into the Universal Dependencies standard.",
    "la_perseus": "This Universal Dependencies Latin Treebank consists of an automatic conversion of a selection of passages from the Ancient Greek and Latin Dependency Treebank 2.1",
    "la_proiel": "The Latin PROIEL treebank is based on the Latin data from the PROIEL treebank, and contains most of the Vulgate New Testament translations plus selections from Caesar's Gallic War, Cicero's Letters to Atticus, Palladius' Opus Agriculturae and the first book of Cicero's De officiis.",
    "lv_lvtb": "Latvian UD Treebank is based on Latvian Treebank (LVTB), being created at University of Latvia, Institute of Mathematics and Computer Science, Artificial Intelligence Laboratory.",
    "lt_alksnis": "The Lithuanian dependency treebank ALKSNIS v3.0 (Vytautas Magnus University).",
    "lt_hse": "Lithuanian treebank annotated manually (dependencies) using the Morphological Annotator by CCL, Vytautas Magnus University (http://tekstynas.vdu.lt/) and manual disambiguation. A pilot version which includes news and an essay by Tomas Venclova is available here.",
    "olo_kkpp": "UD Livvi-KKPP is a manually annotated new corpus of Livvi-Karelian made directly in the Universal dependencies annotation scheme. The data is collected from VepKar corpora and consists of mostly modern news texts but also some stories and educational texts.",
    "mt_mudt": "MUDT (Maltese Universal Dependencies Treebank) is a manually annotated treebank of Maltese, a Semitic language of Malta descended from North African Arabic with a significant amount of Italo-Romance influence. MUDT was designed as a balanced corpus with four major genres (see Splitting below) represented roughly equally.",
    "gv_cadhan": "This is the Cadhan Aonair UD treebank for Manx Gaelic, created by Kevin Scannell.",
    "mr_ufal": "UD Marathi is a manually annotated treebank consisting primarily of stories from Wikisource, and parts of an article on Wikipedia.",
    "gun_dooley": "UD Mbya_Guarani-Dooley is a corpus of narratives written in Mbyá Guaraní (Tupian) in Brazil, and collected by Robert Dooley. Due to copyright restrictions, the corpus that is distributed as part of UD only contains the annotation (tags, features, relations) while the FORM and LEMMA columns are empty.",
    "gun_thomas": "UD Mbya_Guarani-Thomas is a corpus of Mbyá Guaraní (Tupian) texts collected by Guillaume Thomas. The current version of the corpus consists of three speeches by Paulina Kerechu Núñez Romero, a Mbyá Guaraní speaker from Ytu, Caazapá Department, Paraguay.",
    "mdf_jr": "Erme Universal Dependencies annotated texts Moksha are the origin of UD_Moksha-JR with annotation (CoNLL-U) for texts in the Moksha language, it originally consists of a sample from a number of fiction authors writing originals in Moksha.",
    "myu_tudet": "UD_Munduruku-TuDeT is a collection of annotated sentences in Mundurukú. Together with UD_Akuntsu-TuDeT and UD_Tupinamba-TuDeT, UD_Munduruku-TuDeT is part of the TuLaR project.",
    "pcm_nsc": "A Universal Dependencies corpus for spoken Naija (Nigerian Pidgin).",
    "nyq_aha": "The AHA Nayini Treebank is a small treebank for contemporary Nayini. Its corpus is collected and annotated manually. We have prepared this treebank based on interviews with Nayini speakers.",
    "sme_giella": "This is a North Sámi treebank based on a manually disambiguated and function-labelled gold-standard corpus of North Sámi produced by the Giellatekno team at UiT Norgga árktalaš universitehta.",
    "no_bokmaal": "The Norwegian UD treebank is based on the Bokmål section of the Norwegian Dependency Treebank (NDT), which is a syntactic treebank of Norwegian. NDT has been automatically converted to the UD scheme by Lilja Øvrelid at the University of Oslo.",
    "no_nynorsk": "The Norwegian UD treebank is based on the Nynorsk section of the Norwegian Dependency Treebank (NDT), which is a syntactic treebank of Norwegian.  NDT has been automatically converted to the UD scheme by Lilja Øvrelid at the University of Oslo.",
    "no_nynorsklia": "This Norwegian treebank is based on the LIA treebank of transcribed spoken Norwegian dialects. The treebank has been automatically converted to the UD scheme by Lilja Øvrelid at the University of Oslo.",
    "cu_proiel": "The Old Church Slavonic (OCS) UD treebank is based on the Old Church Slavonic data from the PROIEL treebank and contains the text of the Codex Marianus New Testament translation.",
    "fro_srcmf": "UD_Old_French-SRCMF is a conversion of (part of) the SRCMF corpus (Syntactic Reference Corpus of Medieval French srcmf.org).",
    "orv_rnc": "`UD_Old_Russian-RNC` is a sample of the Middle Russian corpus (1300-1700), a part of the Russian National Corpus. The data were originally annotated according to the RNC and extended UD-Russian morphological schemas and UD 2.4 dependency schema.",
    "orv_torot": "UD_Old_Russian-TOROT is a conversion of a selection of the Old East Slavonic and Middle Russian data in the Tromsø Old Russian and OCS Treebank (TOROT), which was originally annotated in PROIEL dependency format.",
    "otk_tonqq": "`UD_Old_Turkish-Tonqq` is an Old Turkish treebank built upon Turkic script texts or sentences that are trivially convertible.",
    "fa_perdt": "The Persian Universal Dependency Treebank (PerUDT) is the result of automatic coversion of Persian Dependency Treebank (PerDT) with extensive manual corrections. Please refer to the follwoing work, if you use this data: Mohammad Sadegh Rasooli, Pegah Safari, Amirsaeid Moloodi, and Alireza Nourian. 'The Persian Dependency Treebank Made Universal'. 2020 (to appear).",
    "fa_seraji": "The Persian Universal Dependency Treebank (Persian UD) is based on Uppsala Persian Dependency Treebank (UPDT). The conversion of the UPDT to the Universal Dependencies was performed semi-automatically with extensive manual checks and corrections.",
    "pl_lfg": "The LFG Enhanced UD treebank of Polish is based on a corpus of LFG (Lexical Functional Grammar) syntactic structures generated by an LFG grammar of Polish, POLFIE, and manually disambiguated by human annotators.",
    "pl_pdb": "The Polish PDB-UD treebank is based on the Polish Dependency Bank 2.0 (PDB 2.0), created at the Institute of Computer Science, Polish Academy of Sciences in Warsaw. The PDB-UD treebank is an extended and corrected version of the Polish SZ-UD treebank (the release 1.2 to 2.3).",
    "pl_pud": "This is the Polish portion of the Parallel Universal Dependencies (PUD) treebanks, created at the Institute of Computer Science, Polish Academy of Sciences in Warsaw.Re",
    "pt_bosque": "This Universal Dependencies (UD) Portuguese treebank is based on the Constraint Grammar converted version of the Bosque, which is part of the Floresta Sintá(c)tica treebank. It contains both European (CETEMPúblico) and Brazilian (CETENFolha) variants.",
    "pt_gsd": "The Brazilian Portuguese UD is converted from the Google Universal Dependency Treebank v2.0 (legacy).",
    "pt_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "ro_nonstandard": "The Romanian Non-standard UD treebank (called UAIC-RoDia) is based on UAIC-RoDia Treebank. UAIC-RoDia = ISLRN 156-635-615-024-0",
    "ro_rrt": "The Romanian UD treebank (called RoRefTrees) (Barbu Mititelu et al., 2016) is the reference treebank in UD format for standard Romanian.",
    "ro_simonero": "SiMoNERo is a medical corpus of contemporary Romanian.",
    "ru_gsd": "Russian Universal Dependencies Treebank annotated and converted by Google.",
    "ru_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "ru_syntagrus": "Russian data from the SynTagRus corpus.",
    "ru_taiga": "Universal Dependencies treebank is based on data samples extracted from Taiga Corpus and MorphoRuEval-2017 and GramEval-2020 shared tasks collections.",
    "sa_ufal": "A small Sanskrit treebank of sentences from Pañcatantra, an ancient Indian collection of interrelated fables by Vishnu Sharma.",
    "sa_vedic": "The Treebank of Vedic Sanskrit contains 4,000 sentences with 27,000 words chosen from metrical and prose passages of the Ṛgveda (RV), the Śaunaka recension of the Atharvaveda (ŚS), the Maitrāyaṇīsaṃhitā (MS), and the Aitareya- (AB) and Śatapatha-Brāhmaṇas (ŚB). Lexical and morpho-syntactic information has been generated using a tagging software and manually validated. POS tags have been induced automatically from the morpho-sytactic information of each word.",
    "gd_arcosg": "A treebank of Scottish Gaelic based on the Annotated Reference Corpus Of Scottish Gaelic (ARCOSG).",
    "sr_set": "The Serbian UD treebank is based on the [SETimes-SR](http://hdl.handle.net/11356/1200) corpus and additional news documents from the Serbian web.",
    "sms_giellagas": "The UD Skolt Sami Giellagas treebank is based almost entirely on spoken Skolt Sami corpora.",
    "sk_snk": "The Slovak UD treebank is based on data originally annotated as part of the Slovak National Corpus, following the annotation style of the Prague Dependency Treebank.",
    "sl_ssj": "The Slovenian UD Treebank is a rule-based conversion of the ssj500k treebank, the largest collection of manually syntactically annotated data in Slovenian, originally annotated in the JOS annotation scheme.",
    "sl_sst": "The Spoken Slovenian UD Treebank (SST) is the first syntactically annotated corpus of spoken Slovenian, based on a sample of the reference GOS corpus, a collection of transcribed audio recordings of monologic, dialogic and multi-party spontaneous speech in different everyday situations.",
    "soj_aha": "The AHA Soi Treebank is a small treebank for contemporary Soi. Its corpus is collected and annotated manually. We have prepared this treebank based on interviews with Soi speakers.",
    "ajp_madar": "The South_Levantine_Arabic-MADAR treebank consists of 100 manually-annotated sentences taken from the [MADAR](https://camel.abudhabi.nyu.edu/madar/) (Multi-Arabic Dialect Applications and Resources) project. ",
    "es_ancora": "Spanish data from the AnCora corpus.",
    "es_gsd": "The Spanish UD is converted from the content head version of the universal dependency treebank v2.0 (legacy).",
    "es_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the [CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies](http://universaldependencies.org/conll17/).",
    "swl_sslc": "The Universal Dependencies treebank for Swedish Sign Language (ISO 639-3: swl) is derived from the Swedish Sign Language Corpus (SSLC) from the department of linguistics, Stockholm University.",
    "sv_lines": "UD Swedish_LinES is the Swedish half of the LinES Parallel Treebank with UD annotations. All segments are translations from English and the sources cover literary genres, online manuals and Europarl data.",
    "sv_pud": "Swedish-PUD is the Swedish part of the Parallel Universal Dependencies (PUD) treebanks.",
    "sv_talbanken": "The Swedish-Talbanken treebank is based on Talbanken, a treebank developed at Lund University in the 1970s.",
    "gsw_uzh": "_UD_Swiss_German-UZH_ is a tiny manually annotated treebank of 100 sentences in different Swiss German dialects and a variety of text genres.",
    "tl_trg": "UD_Tagalog-TRG is a UD treebank manually annotated using sentences from a grammar book.",
    "tl_ugnayan": "Ugnayan is a manually annotated Tagalog treebank currently composed of educational fiction and nonfiction text. The treebank is under development at the University of the Philippines.",
    "ta_mwtt": "MWTT - Modern Written Tamil Treebank has sentences taken primarily from a text called 'A Grammar of Modern Tamil' by Thomas Lehmann (1993). This initial release has 536 sentences of various lengths, and all of these are added as the test set.",
    "ta_ttb": "The UD Tamil treebank is based on the Tamil Dependency Treebank created at the Charles University in Prague by Loganathan Ramasamy.",
    "te_mtg": "The Telugu UD treebank is created in UD based on manual annotations of sentences from a grammar book.",
    "th_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "tpn_tudet": "UD_Tupinamba-TuDeT is a collection of annotated texts in Tupi(nambá). Together with UD_Akuntsu-TuDeT and UD_Munduruku-TuDeT, UD_Tupinamba-TuDeT is part of the TuLaR. The treebank is ongoing work and is constantly being updated.",
    "qtd_sagt": "UD Turkish-German SAGT is a Turkish-German code-switching treebank that is developed as part of the SAGT project.",
    "tr_boun": "The largest Turkish dependency treebank annotated in UD style. Created by the members of [TABILAB](http://http://tabilab.cmpe.boun.edu.tr/) from Boğaziçi University.",
    "tr_gb": "This is a treebank annotating example sentences from a comprehensive grammar book of Turkish.",
    "tr_imst": "The UD Turkish Treebank, also called the IMST-UD Treebank, is a semi-automatic conversion of the IMST Treebank (Sulubacak et al., 2016).",
    "tr_pud": "This is a part of the Parallel Universal Dependencies (PUD) treebanks created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies.",
    "uk_iu": "Gold standard Universal Dependencies corpus for Ukrainian, developed for UD originally, by Institute for Ukrainian, NGO. [українською]",
    "hsb_ufal": "A small treebank of Upper Sorbian based mostly on Wikipedia.",
    "ur_udtb": "The Urdu Universal Dependency Treebank was automatically converted from Urdu Dependency Treebank (UDTB) which is part of an ongoing effort of creating multi-layered treebanks for Hindi and Urdu.",
    "ug_udt": "The Uyghur UD treebank is based on the Uyghur Dependency Treebank (UDT), created at the Xinjiang University in Ürümqi, China.",
    "vi_vtb": "The Vietnamese UD treebank is a conversion of the constituent treebank created in the VLSP project (https://vlsp.hpda.vn/).",
    "wbp_ufal": "A small treebank of grammatical examples in Warlpiri, taken from linguistic literature.",
    "cy_ccg": "UD Welsh-CCG (Corpws Cystrawennol y Gymraeg) is a treebank of Welsh, annotated according to the Universal Dependencies guidelines.",
    "wo_wtb": "UD_Wolof-WTB is a natively manual developed treebank for Wolof. Sentences were collected from encyclopedic, fictional, biographical, religious texts and news.",
    "yo_ytb": "Parts of the Yoruba Bible and of the Yoruba edition of Wikipedia, hand-annotated natively in Universal Dependencies.",
}
_PREFIX = "https://raw.githubusercontent.com/UniversalDependencies/"
_UD_DATASETS = {
    "af_afribooms": {
        "train": "UD_Afrikaans-AfriBooms/r2.7/af_afribooms-ud-train.conllu",
        "dev": "UD_Afrikaans-AfriBooms/r2.7/af_afribooms-ud-dev.conllu",
        "test": "UD_Afrikaans-AfriBooms/r2.7/af_afribooms-ud-test.conllu",
    },
    "akk_pisandub": {
        "test": "UD_Akkadian-PISANDUB/r2.7/akk_pisandub-ud-test.conllu",
    },
    "akk_riao": {
        "test": "UD_Akkadian-RIAO/r2.7/akk_riao-ud-test.conllu",
    },
    "aqz_tudet": {
        "test": "UD_Akuntsu-TuDeT/r2.7/aqz_tudet-ud-test.conllu",
    },
    "sq_tsa": {
        "test": "UD_Albanian-TSA/r2.7/sq_tsa-ud-test.conllu",
    },
    "am_att": {
        "test": "UD_Amharic-ATT/r2.7/am_att-ud-test.conllu",
    },
    "grc_perseus": {
        "train": "UD_Ancient_Greek-Perseus/r2.7/grc_perseus-ud-train.conllu",
        "dev": "UD_Ancient_Greek-Perseus/r2.7/grc_perseus-ud-dev.conllu",
        "test": "UD_Ancient_Greek-Perseus/r2.7/grc_perseus-ud-test.conllu",
    },
    "grc_proiel": {
        "train": "UD_Ancient_Greek-PROIEL/r2.7/grc_proiel-ud-train.conllu",
        "dev": "UD_Ancient_Greek-PROIEL/r2.7/grc_proiel-ud-dev.conllu",
        "test": "UD_Ancient_Greek-PROIEL/r2.7/grc_proiel-ud-test.conllu",
    },
    "apu_ufpa": {
        "test": "UD_Apurina-UFPA/r2.7/apu_ufpa-ud-test.conllu",
    },
    "ar_nyuad": {
        "train": "UD_Arabic-NYUAD/r2.7/ar_nyuad-ud-train.conllu",
        "dev": "UD_Arabic-NYUAD/r2.7/ar_nyuad-ud-dev.conllu",
        "test": "UD_Arabic-NYUAD/r2.7/ar_nyuad-ud-test.conllu",
    },
    "ar_padt": {
        "train": "UD_Arabic-PADT/r2.7/ar_padt-ud-train.conllu",
        "dev": "UD_Arabic-PADT/r2.7/ar_padt-ud-dev.conllu",
        "test": "UD_Arabic-PADT/r2.7/ar_padt-ud-test.conllu",
    },
    "ar_pud": {
        "test": "UD_Arabic-PUD/r2.7/ar_pud-ud-test.conllu",
    },
    "hy_armtdp": {
        "train": "UD_Armenian-ArmTDP/r2.7/hy_armtdp-ud-train.conllu",
        "dev": "UD_Armenian-ArmTDP/r2.7/hy_armtdp-ud-dev.conllu",
        "test": "UD_Armenian-ArmTDP/r2.7/hy_armtdp-ud-test.conllu",
    },
    "aii_as": {
        "test": "UD_Assyrian-AS/r2.7/aii_as-ud-test.conllu",
    },
    "bm_crb": {
        "test": "UD_Bambara-CRB/r2.7/bm_crb-ud-test.conllu",
    },
    "eu_bdt": {
        "train": "UD_Basque-BDT/r2.7/eu_bdt-ud-train.conllu",
        "dev": "UD_Basque-BDT/r2.7/eu_bdt-ud-dev.conllu",
        "test": "UD_Basque-BDT/r2.7/eu_bdt-ud-test.conllu",
    },
    "be_hse": {
        "train": "UD_Belarusian-HSE/r2.7/be_hse-ud-train.conllu",
        "dev": "UD_Belarusian-HSE/r2.7/be_hse-ud-dev.conllu",
        "test": "UD_Belarusian-HSE/r2.7/be_hse-ud-test.conllu",
    },
    "bho_bhtb": {
        "test": "UD_Bhojpuri-BHTB/r2.7/bho_bhtb-ud-test.conllu",
    },
    "br_keb": {
        "test": "UD_Breton-KEB/r2.7/br_keb-ud-test.conllu",
    },
    "bg_btb": {
        "train": "UD_Bulgarian-BTB/r2.7/bg_btb-ud-train.conllu",
        "dev": "UD_Bulgarian-BTB/r2.7/bg_btb-ud-dev.conllu",
        "test": "UD_Bulgarian-BTB/r2.7/bg_btb-ud-test.conllu",
    },
    "bxr_bdt": {
        "train": "UD_Buryat-BDT/r2.7/bxr_bdt-ud-train.conllu",
        "test": "UD_Buryat-BDT/r2.7/bxr_bdt-ud-test.conllu",
    },
    "yue_hk": {
        "test": "UD_Cantonese-HK/r2.7/yue_hk-ud-test.conllu",
    },
    "ca_ancora": {
        "train": "UD_Catalan-AnCora/r2.7/ca_ancora-ud-train.conllu",
        "dev": "UD_Catalan-AnCora/r2.7/ca_ancora-ud-dev.conllu",
        "test": "UD_Catalan-AnCora/r2.7/ca_ancora-ud-test.conllu",
    },
    "zh_cfl": {
        "test": "UD_Chinese-CFL/r2.7/zh_cfl-ud-test.conllu",
    },
    "zh_gsd": {
        "train": "UD_Chinese-GSD/r2.7/zh_gsd-ud-train.conllu",
        "dev": "UD_Chinese-GSD/r2.7/zh_gsd-ud-dev.conllu",
        "test": "UD_Chinese-GSD/r2.7/zh_gsd-ud-test.conllu",
    },
    "zh_gsdsimp": {
        "train": "UD_Chinese-GSDSimp/r2.7/zh_gsdsimp-ud-train.conllu",
        "dev": "UD_Chinese-GSDSimp/r2.7/zh_gsdsimp-ud-dev.conllu",
        "test": "UD_Chinese-GSDSimp/r2.7/zh_gsdsimp-ud-test.conllu",
    },
    "zh_hk": {
        "test": "UD_Chinese-HK/r2.7/zh_hk-ud-test.conllu",
    },
    "zh_pud": {
        "test": "UD_Chinese-PUD/r2.7/zh_pud-ud-test.conllu",
    },
    "ckt_hse": {
        "test": "UD_Chukchi-HSE/r2.7/ckt_hse-ud-test.conllu",
    },
    "lzh_kyoto": {
        "train": "UD_Classical_Chinese-Kyoto/r2.7/lzh_kyoto-ud-train.conllu",
        "dev": "UD_Classical_Chinese-Kyoto/r2.7/lzh_kyoto-ud-dev.conllu",
        "test": "UD_Classical_Chinese-Kyoto/r2.7/lzh_kyoto-ud-test.conllu",
    },
    "cop_scriptorium": {
        "train": "UD_Coptic-Scriptorium/r2.7/cop_scriptorium-ud-train.conllu",
        "dev": "UD_Coptic-Scriptorium/r2.7/cop_scriptorium-ud-dev.conllu",
        "test": "UD_Coptic-Scriptorium/r2.7/cop_scriptorium-ud-test.conllu",
    },
    "hr_set": {
        "train": "UD_Croatian-SET/r2.7/hr_set-ud-train.conllu",
        "dev": "UD_Croatian-SET/r2.7/hr_set-ud-dev.conllu",
        "test": "UD_Croatian-SET/r2.7/hr_set-ud-test.conllu",
    },
    "cs_cac": {
        "train": "UD_Czech-CAC/r2.7/cs_cac-ud-train.conllu",
        "dev": "UD_Czech-CAC/r2.7/cs_cac-ud-dev.conllu",
        "test": "UD_Czech-CAC/r2.7/cs_cac-ud-test.conllu",
    },
    "cs_cltt": {
        "train": "UD_Czech-CLTT/r2.7/cs_cltt-ud-train.conllu",
        "dev": "UD_Czech-CLTT/r2.7/cs_cltt-ud-dev.conllu",
        "test": "UD_Czech-CLTT/r2.7/cs_cltt-ud-test.conllu",
    },
    "cs_fictree": {
        "train": "UD_Czech-FicTree/r2.7/cs_fictree-ud-train.conllu",
        "dev": "UD_Czech-FicTree/r2.7/cs_fictree-ud-dev.conllu",
        "test": "UD_Czech-FicTree/r2.7/cs_fictree-ud-test.conllu",
    },
    "cs_pdt": {
        "train": [
            "UD_Czech-PDT/r2.7/cs_pdt-ud-train-l.conllu",
            "UD_Czech-PDT/r2.7/cs_pdt-ud-train-m.conllu",
            "UD_Czech-PDT/r2.7/cs_pdt-ud-train-c.conllu",
            "UD_Czech-PDT/r2.7/cs_pdt-ud-train-v.conllu",
        ],
        "dev": "UD_Czech-PDT/r2.7/cs_pdt-ud-dev.conllu",
        "test": "UD_Czech-PDT/r2.7/cs_pdt-ud-test.conllu",
    },
    "cs_pud": {
        "test": "UD_Czech-PUD/r2.7/cs_pud-ud-test.conllu",
    },
    "da_ddt": {
        "train": "UD_Danish-DDT/r2.7/da_ddt-ud-train.conllu",
        "dev": "UD_Danish-DDT/r2.7/da_ddt-ud-dev.conllu",
        "test": "UD_Danish-DDT/r2.7/da_ddt-ud-test.conllu",
    },
    "nl_alpino": {
        "train": "UD_Dutch-Alpino/r2.7/nl_alpino-ud-train.conllu",
        "dev": "UD_Dutch-Alpino/r2.7/nl_alpino-ud-dev.conllu",
        "test": "UD_Dutch-Alpino/r2.7/nl_alpino-ud-test.conllu",
    },
    "nl_lassysmall": {
        "train": "UD_Dutch-LassySmall/r2.7/nl_lassysmall-ud-train.conllu",
        "dev": "UD_Dutch-LassySmall/r2.7/nl_lassysmall-ud-dev.conllu",
        "test": "UD_Dutch-LassySmall/r2.7/nl_lassysmall-ud-test.conllu",
    },
    "en_esl": {
        "train": "UD_English-ESL/r2.7/en_esl-ud-train.conllu",
        "dev": "UD_English-ESL/r2.7/en_esl-ud-dev.conllu",
        "test": "UD_English-ESL/r2.7/en_esl-ud-test.conllu",
    },
    "en_ewt": {
        "train": "UD_English-EWT/r2.7/en_ewt-ud-train.conllu",
        "dev": "UD_English-EWT/r2.7/en_ewt-ud-dev.conllu",
        "test": "UD_English-EWT/r2.7/en_ewt-ud-test.conllu",
    },
    "en_gum": {
        "train": "UD_English-GUM/r2.7/en_gum-ud-train.conllu",
        "dev": "UD_English-GUM/r2.7/en_gum-ud-dev.conllu",
        "test": "UD_English-GUM/r2.7/en_gum-ud-test.conllu",
    },
    "en_gumreddit": {
        "train": "UD_English-GUMReddit/r2.7/en_gumreddit-ud-train.conllu",
        "dev": "UD_English-GUMReddit/r2.7/en_gumreddit-ud-dev.conllu",
        "test": "UD_English-GUMReddit/r2.7/en_gumreddit-ud-test.conllu",
    },
    "en_lines": {
        "train": "UD_English-LinES/r2.7/en_lines-ud-train.conllu",
        "dev": "UD_English-LinES/r2.7/en_lines-ud-dev.conllu",
        "test": "UD_English-LinES/r2.7/en_lines-ud-test.conllu",
    },
    "en_partut": {
        "train": "UD_English-ParTUT/r2.7/en_partut-ud-train.conllu",
        "dev": "UD_English-ParTUT/r2.7/en_partut-ud-dev.conllu",
        "test": "UD_English-ParTUT/r2.7/en_partut-ud-test.conllu",
    },
    "en_pronouns": {
        "test": "UD_English-Pronouns/r2.7/en_pronouns-ud-test.conllu",
    },
    "en_pud": {
        "test": "UD_English-PUD/r2.7/en_pud-ud-test.conllu",
    },
    "myv_jr": {
        "test": "UD_Erzya-JR/r2.7/myv_jr-ud-test.conllu",
    },
    "et_edt": {
        "train": "UD_Estonian-EDT/r2.7/et_edt-ud-train.conllu",
        "dev": "UD_Estonian-EDT/r2.7/et_edt-ud-dev.conllu",
        "test": "UD_Estonian-EDT/r2.7/et_edt-ud-test.conllu",
    },
    "et_ewt": {
        "train": "UD_Estonian-EWT/r2.7/et_ewt-ud-train.conllu",
        "dev": "UD_Estonian-EWT/r2.7/et_ewt-ud-dev.conllu",
        "test": "UD_Estonian-EWT/r2.7/et_ewt-ud-test.conllu",
    },
    "fo_farpahc": {
        "train": "UD_Faroese-FarPaHC/r2.7/fo_farpahc-ud-train.conllu",
        "dev": "UD_Faroese-FarPaHC/r2.7/fo_farpahc-ud-dev.conllu",
        "test": "UD_Faroese-FarPaHC/r2.7/fo_farpahc-ud-test.conllu",
    },
    "fo_oft": {
        "test": "UD_Faroese-OFT/r2.7/fo_oft-ud-test.conllu",
    },
    "fi_ftb": {
        "train": "UD_Finnish-FTB/r2.7/fi_ftb-ud-train.conllu",
        "dev": "UD_Finnish-FTB/r2.7/fi_ftb-ud-dev.conllu",
        "test": "UD_Finnish-FTB/r2.7/fi_ftb-ud-test.conllu",
    },
    "fi_ood": {
        "test": "UD_Finnish-OOD/r2.7/fi_ood-ud-test.conllu",
    },
    "fi_pud": {
        "test": "UD_Finnish-PUD/r2.7/fi_pud-ud-test.conllu",
    },
    "fi_tdt": {
        "train": "UD_Finnish-TDT/r2.7/fi_tdt-ud-train.conllu",
        "dev": "UD_Finnish-TDT/r2.7/fi_tdt-ud-dev.conllu",
        "test": "UD_Finnish-TDT/r2.7/fi_tdt-ud-test.conllu",
    },
    "fr_fqb": {
        "test": "UD_French-FQB/r2.7/fr_fqb-ud-test.conllu",
    },
    "fr_ftb": {
        "train": "UD_French-FTB/r2.7/fr_ftb-ud-train.conllu",
        "dev": "UD_French-FTB/r2.7/fr_ftb-ud-dev.conllu",
        "test": "UD_French-FTB/r2.7/fr_ftb-ud-test.conllu",
    },
    "fr_gsd": {
        "train": "UD_French-GSD/r2.7/fr_gsd-ud-train.conllu",
        "dev": "UD_French-GSD/r2.7/fr_gsd-ud-dev.conllu",
        "test": "UD_French-GSD/r2.7/fr_gsd-ud-test.conllu",
    },
    "fr_partut": {
        "train": "UD_French-ParTUT/r2.7/fr_partut-ud-train.conllu",
        "dev": "UD_French-ParTUT/r2.7/fr_partut-ud-dev.conllu",
        "test": "UD_French-ParTUT/r2.7/fr_partut-ud-test.conllu",
    },
    "fr_pud": {
        "test": "UD_French-PUD/r2.7/fr_pud-ud-test.conllu",
    },
    "fr_sequoia": {
        "train": "UD_French-Sequoia/r2.7/fr_sequoia-ud-train.conllu",
        "dev": "UD_French-Sequoia/r2.7/fr_sequoia-ud-dev.conllu",
        "test": "UD_French-Sequoia/r2.7/fr_sequoia-ud-test.conllu",
    },
    "fr_spoken": {
        "train": "UD_French-Spoken/r2.7/fr_spoken-ud-train.conllu",
        "dev": "UD_French-Spoken/r2.7/fr_spoken-ud-dev.conllu",
        "test": "UD_French-Spoken/r2.7/fr_spoken-ud-test.conllu",
    },
    "gl_ctg": {
        "train": "UD_Galician-CTG/r2.7/gl_ctg-ud-train.conllu",
        "dev": "UD_Galician-CTG/r2.7/gl_ctg-ud-dev.conllu",
        "test": "UD_Galician-CTG/r2.7/gl_ctg-ud-test.conllu",
    },
    "gl_treegal": {
        "train": "UD_Galician-TreeGal/r2.7/gl_treegal-ud-train.conllu",
        "test": "UD_Galician-TreeGal/r2.7/gl_treegal-ud-test.conllu",
    },
    "de_gsd": {
        "train": "UD_German-GSD/r2.7/de_gsd-ud-train.conllu",
        "dev": "UD_German-GSD/r2.7/de_gsd-ud-dev.conllu",
        "test": "UD_German-GSD/r2.7/de_gsd-ud-test.conllu",
    },
    "de_hdt": {
        "train": [
            "UD_German-HDT/r2.7/de_hdt-ud-train-a-1.conllu",
            "UD_German-HDT/r2.7/de_hdt-ud-train-a-2.conllu",
            "UD_German-HDT/r2.7/de_hdt-ud-train-b-1.conllu",
            "UD_German-HDT/r2.7/de_hdt-ud-train-b-2.conllu",
        ],
        "dev": "UD_German-HDT/r2.7/de_hdt-ud-dev.conllu",
        "test": "UD_German-HDT/r2.7/de_hdt-ud-test.conllu",
    },
    "de_lit": {
        "test": "UD_German-LIT/r2.7/de_lit-ud-test.conllu",
    },
    "de_pud": {
        "test": "UD_German-PUD/r2.7/de_pud-ud-test.conllu",
    },
    "got_proiel": {
        "train": "UD_Gothic-PROIEL/r2.7/got_proiel-ud-train.conllu",
        "dev": "UD_Gothic-PROIEL/r2.7/got_proiel-ud-dev.conllu",
        "test": "UD_Gothic-PROIEL/r2.7/got_proiel-ud-test.conllu",
    },
    "el_gdt": {
        "train": "UD_Greek-GDT/r2.7/el_gdt-ud-train.conllu",
        "dev": "UD_Greek-GDT/r2.7/el_gdt-ud-dev.conllu",
        "test": "UD_Greek-GDT/r2.7/el_gdt-ud-test.conllu",
    },
    "he_htb": {
        "train": "UD_Hebrew-HTB/r2.7/he_htb-ud-train.conllu",
        "dev": "UD_Hebrew-HTB/r2.7/he_htb-ud-dev.conllu",
        "test": "UD_Hebrew-HTB/r2.7/he_htb-ud-test.conllu",
    },
    "qhe_hiencs": {
        "train": "UD_Hindi_English-HIENCS/r2.7/qhe_hiencs-ud-train.conllu",
        "dev": "UD_Hindi_English-HIENCS/r2.7/qhe_hiencs-ud-dev.conllu",
        "test": "UD_Hindi_English-HIENCS/r2.7/qhe_hiencs-ud-test.conllu",
    },
    "hi_hdtb": {
        "train": "UD_Hindi-HDTB/r2.7/hi_hdtb-ud-train.conllu",
        "dev": "UD_Hindi-HDTB/r2.7/hi_hdtb-ud-dev.conllu",
        "test": "UD_Hindi-HDTB/r2.7/hi_hdtb-ud-test.conllu",
    },
    "hi_pud": {
        "test": "UD_Hindi-PUD/r2.7/hi_pud-ud-test.conllu",
    },
    "hu_szeged": {
        "train": "UD_Hungarian-Szeged/r2.7/hu_szeged-ud-train.conllu",
        "dev": "UD_Hungarian-Szeged/r2.7/hu_szeged-ud-dev.conllu",
        "test": "UD_Hungarian-Szeged/r2.7/hu_szeged-ud-test.conllu",
    },
    "is_icepahc": {
        "train": "UD_Icelandic-IcePaHC/r2.7/is_icepahc-ud-train.conllu",
        "dev": "UD_Icelandic-IcePaHC/r2.7/is_icepahc-ud-dev.conllu",
        "test": "UD_Icelandic-IcePaHC/r2.7/is_icepahc-ud-test.conllu",
    },
    "is_pud": {
        "test": "UD_Icelandic-PUD/r2.7/is_pud-ud-test.conllu",
    },
    "id_csui": {
        "train": "UD_Indonesian-CSUI/r2.7/id_csui-ud-train.conllu",
        "test": "UD_Indonesian-CSUI/r2.7/id_csui-ud-test.conllu",
    },
    "id_gsd": {
        "train": "UD_Indonesian-GSD/r2.7/id_gsd-ud-train.conllu",
        "dev": "UD_Indonesian-GSD/r2.7/id_gsd-ud-dev.conllu",
        "test": "UD_Indonesian-GSD/r2.7/id_gsd-ud-test.conllu",
    },
    "id_pud": {
        "test": "UD_Indonesian-PUD/r2.7/id_pud-ud-test.conllu",
    },
    "ga_idt": {
        "train": "UD_Irish-IDT/r2.7/ga_idt-ud-train.conllu",
        "dev": "UD_Irish-IDT/r2.7/ga_idt-ud-dev.conllu",
        "test": "UD_Irish-IDT/r2.7/ga_idt-ud-test.conllu",
    },
    "it_isdt": {
        "train": "UD_Italian-ISDT/r2.7/it_isdt-ud-train.conllu",
        "dev": "UD_Italian-ISDT/r2.7/it_isdt-ud-dev.conllu",
        "test": "UD_Italian-ISDT/r2.7/it_isdt-ud-test.conllu",
    },
    "it_partut": {
        "train": "UD_Italian-ParTUT/r2.7/it_partut-ud-train.conllu",
        "dev": "UD_Italian-ParTUT/r2.7/it_partut-ud-dev.conllu",
        "test": "UD_Italian-ParTUT/r2.7/it_partut-ud-test.conllu",
    },
    "it_postwita": {
        "train": "UD_Italian-PoSTWITA/r2.7/it_postwita-ud-train.conllu",
        "dev": "UD_Italian-PoSTWITA/r2.7/it_postwita-ud-dev.conllu",
        "test": "UD_Italian-PoSTWITA/r2.7/it_postwita-ud-test.conllu",
    },
    "it_pud": {
        "test": "UD_Italian-PUD/r2.7/it_pud-ud-test.conllu",
    },
    "it_twittiro": {
        "train": "UD_Italian-TWITTIRO/r2.7/it_twittiro-ud-train.conllu",
        "dev": "UD_Italian-TWITTIRO/r2.7/it_twittiro-ud-dev.conllu",
        "test": "UD_Italian-TWITTIRO/r2.7/it_twittiro-ud-test.conllu",
    },
    "it_vit": {
        "train": "UD_Italian-VIT/r2.7/it_vit-ud-train.conllu",
        "dev": "UD_Italian-VIT/r2.7/it_vit-ud-dev.conllu",
        "test": "UD_Italian-VIT/r2.7/it_vit-ud-test.conllu",
    },
    "ja_bccwj": {
        "train": "UD_Japanese-BCCWJ/r2.7/ja_bccwj-ud-train.conllu",
        "dev": "UD_Japanese-BCCWJ/r2.7/ja_bccwj-ud-dev.conllu",
        "test": "UD_Japanese-BCCWJ/r2.7/ja_bccwj-ud-test.conllu",
    },
    "ja_gsd": {
        "train": "UD_Japanese-GSD/r2.7/ja_gsd-ud-train.conllu",
        "dev": "UD_Japanese-GSD/r2.7/ja_gsd-ud-dev.conllu",
        "test": "UD_Japanese-GSD/r2.7/ja_gsd-ud-test.conllu",
    },
    "ja_modern": {
        "test": "UD_Japanese-Modern/r2.7/ja_modern-ud-test.conllu",
    },
    "ja_pud": {
        "test": "UD_Japanese-PUD/r2.7/ja_pud-ud-test.conllu",
    },
    "krl_kkpp": {
        "test": "UD_Karelian-KKPP/r2.7/krl_kkpp-ud-test.conllu",
    },
    "kk_ktb": {
        "train": "UD_Kazakh-KTB/r2.7/kk_ktb-ud-train.conllu",
        "test": "UD_Kazakh-KTB/r2.7/kk_ktb-ud-test.conllu",
    },
    "kfm_aha": {
        "test": "UD_Khunsari-AHA/r2.7/kfm_aha-ud-test.conllu",
    },
    "koi_uh": {
        "test": "UD_Komi_Permyak-UH/r2.7/koi_uh-ud-test.conllu",
    },
    "kpv_ikdp": {
        "test": "UD_Komi_Zyrian-IKDP/r2.7/kpv_ikdp-ud-test.conllu",
    },
    "kpv_lattice": {
        "test": "UD_Komi_Zyrian-Lattice/r2.7/kpv_lattice-ud-test.conllu",
    },
    "ko_gsd": {
        "train": "UD_Korean-GSD/r2.7/ko_gsd-ud-train.conllu",
        "dev": "UD_Korean-GSD/r2.7/ko_gsd-ud-dev.conllu",
        "test": "UD_Korean-GSD/r2.7/ko_gsd-ud-test.conllu",
    },
    "ko_kaist": {
        "train": "UD_Korean-Kaist/r2.7/ko_kaist-ud-train.conllu",
        "dev": "UD_Korean-Kaist/r2.7/ko_kaist-ud-dev.conllu",
        "test": "UD_Korean-Kaist/r2.7/ko_kaist-ud-test.conllu",
    },
    "ko_pud": {
        "test": "UD_Korean-PUD/r2.7/ko_pud-ud-test.conllu",
    },
    "kmr_mg": {
        "train": "UD_Kurmanji-MG/r2.7/kmr_mg-ud-train.conllu",
        "test": "UD_Kurmanji-MG/r2.7/kmr_mg-ud-test.conllu",
    },
    "la_ittb": {
        "train": "UD_Latin-ITTB/r2.7/la_ittb-ud-train.conllu",
        "dev": "UD_Latin-ITTB/r2.7/la_ittb-ud-dev.conllu",
        "test": "UD_Latin-ITTB/r2.7/la_ittb-ud-test.conllu",
    },
    "la_llct": {
        "train": "UD_Latin-LLCT/r2.7/la_llct-ud-train.conllu",
        "dev": "UD_Latin-LLCT/r2.7/la_llct-ud-dev.conllu",
        "test": "UD_Latin-LLCT/r2.7/la_llct-ud-test.conllu",
    },
    "la_perseus": {
        "train": "UD_Latin-Perseus/r2.7/la_perseus-ud-train.conllu",
        "test": "UD_Latin-Perseus/r2.7/la_perseus-ud-test.conllu",
    },
    "la_proiel": {
        "train": "UD_Latin-PROIEL/r2.7/la_proiel-ud-train.conllu",
        "dev": "UD_Latin-PROIEL/r2.7/la_proiel-ud-dev.conllu",
        "test": "UD_Latin-PROIEL/r2.7/la_proiel-ud-test.conllu",
    },
    "lv_lvtb": {
        "train": "UD_Latvian-LVTB/r2.7/lv_lvtb-ud-train.conllu",
        "dev": "UD_Latvian-LVTB/r2.7/lv_lvtb-ud-dev.conllu",
        "test": "UD_Latvian-LVTB/r2.7/lv_lvtb-ud-test.conllu",
    },
    "lt_alksnis": {
        "train": "UD_Lithuanian-ALKSNIS/r2.7/lt_alksnis-ud-train.conllu",
        "dev": "UD_Lithuanian-ALKSNIS/r2.7/lt_alksnis-ud-dev.conllu",
        "test": "UD_Lithuanian-ALKSNIS/r2.7/lt_alksnis-ud-test.conllu",
    },
    "lt_hse": {
        "train": "UD_Lithuanian-HSE/r2.7/lt_hse-ud-train.conllu",
        "dev": "UD_Lithuanian-HSE/r2.7/lt_hse-ud-train.conllu",
        "test": "UD_Lithuanian-HSE/r2.7/lt_hse-ud-train.conllu",
    },
    "olo_kkpp": {
        "train": "UD_Livvi-KKPP/r2.7/olo_kkpp-ud-train.conllu",
        "test": "UD_Livvi-KKPP/r2.7/olo_kkpp-ud-test.conllu",
    },
    "mt_mudt": {
        "train": "UD_Maltese-MUDT/r2.7/mt_mudt-ud-train.conllu",
        "dev": "UD_Maltese-MUDT/r2.7/mt_mudt-ud-dev.conllu",
        "test": "UD_Maltese-MUDT/r2.7/mt_mudt-ud-test.conllu",
    },
    "gv_cadhan": {
        "test": "UD_Manx-Cadhan/r2.7/gv_cadhan-ud-test.conllu",
    },
    "mr_ufal": {
        "train": "UD_Marathi-UFAL/r2.7/mr_ufal-ud-train.conllu",
        "dev": "UD_Marathi-UFAL/r2.7/mr_ufal-ud-dev.conllu",
        "test": "UD_Marathi-UFAL/r2.7/mr_ufal-ud-test.conllu",
    },
    "gun_dooley": {
        "test": "UD_Mbya_Guarani-Dooley/r2.7/gun_dooley-ud-test.conllu",
    },
    "gun_thomas": {
        "test": "UD_Mbya_Guarani-Thomas/r2.7/gun_thomas-ud-test.conllu",
    },
    "mdf_jr": {
        "test": "UD_Moksha-JR/r2.7/mdf_jr-ud-test.conllu",
    },
    "myu_tudet": {
        "test": "UD_Munduruku-TuDeT/r2.7/myu_tudet-ud-test.conllu",
    },
    "pcm_nsc": {
        "train": "UD_Naija-NSC/r2.7/pcm_nsc-ud-train.conllu",
        "dev": "UD_Naija-NSC/r2.7/pcm_nsc-ud-dev.conllu",
        "test": "UD_Naija-NSC/r2.7/pcm_nsc-ud-test.conllu",
    },
    "nyq_aha": {
        "test": "UD_Nayini-AHA/r2.7/nyq_aha-ud-test.conllu",
    },
    "sme_giella": {
        "train": "UD_North_Sami-Giella/r2.7/sme_giella-ud-train.conllu",
        "test": "UD_North_Sami-Giella/r2.7/sme_giella-ud-test.conllu",
    },
    "no_bokmaal": {
        "train": "UD_Norwegian-Bokmaal/r2.7/no_bokmaal-ud-train.conllu",
        "dev": "UD_Norwegian-Bokmaal/r2.7/no_bokmaal-ud-dev.conllu",
        "test": "UD_Norwegian-Bokmaal/r2.7/no_bokmaal-ud-test.conllu",
    },
    "no_nynorsk": {
        "train": "UD_Norwegian-Nynorsk/r2.7/no_nynorsk-ud-train.conllu",
        "dev": "UD_Norwegian-Nynorsk/r2.7/no_nynorsk-ud-dev.conllu",
        "test": "UD_Norwegian-Nynorsk/r2.7/no_nynorsk-ud-test.conllu",
    },
    "no_nynorsklia": {
        "train": "UD_Norwegian-NynorskLIA/r2.7/no_nynorsklia-ud-train.conllu",
        "dev": "UD_Norwegian-NynorskLIA/r2.7/no_nynorsklia-ud-dev.conllu",
        "test": "UD_Norwegian-NynorskLIA/r2.7/no_nynorsklia-ud-test.conllu",
    },
    "cu_proiel": {
        "train": "UD_Old_Church_Slavonic-PROIEL/r2.7/cu_proiel-ud-train.conllu",
        "dev": "UD_Old_Church_Slavonic-PROIEL/r2.7/cu_proiel-ud-dev.conllu",
        "test": "UD_Old_Church_Slavonic-PROIEL/r2.7/cu_proiel-ud-test.conllu",
    },
    "fro_srcmf": {
        "train": "UD_Old_French-SRCMF/r2.7/fro_srcmf-ud-train.conllu",
        "dev": "UD_Old_French-SRCMF/r2.7/fro_srcmf-ud-dev.conllu",
        "test": "UD_Old_French-SRCMF/r2.7/fro_srcmf-ud-test.conllu",
    },
    "orv_rnc": {
        "train": "UD_Old_Russian-RNC/r2.7/orv_rnc-ud-train.conllu",
        "test": "UD_Old_Russian-RNC/r2.7/orv_rnc-ud-test.conllu",
    },
    "orv_torot": {
        "train": "UD_Old_Russian-TOROT/r2.7/orv_torot-ud-train.conllu",
        "dev": "UD_Old_Russian-TOROT/r2.7/orv_torot-ud-dev.conllu",
        "test": "UD_Old_Russian-TOROT/r2.7/orv_torot-ud-test.conllu",
    },
    "otk_tonqq": {
        "test": "UD_Old_Turkish-Tonqq/r2.7/otk_tonqq-ud-test.conllu",
    },
    "fa_perdt": {
        "train": "UD_Persian-PerDT/r2.7/fa_perdt-ud-train.conllu",
        "dev": "UD_Persian-PerDT/r2.7/fa_perdt-ud-dev.conllu",
        "test": "UD_Persian-PerDT/r2.7/fa_perdt-ud-test.conllu",
    },
    "fa_seraji": {
        "train": "UD_Persian-Seraji/r2.7/fa_seraji-ud-train.conllu",
        "dev": "UD_Persian-Seraji/r2.7/fa_seraji-ud-dev.conllu",
        "test": "UD_Persian-Seraji/r2.7/fa_seraji-ud-test.conllu",
    },
    "pl_lfg": {
        "train": "UD_Polish-LFG/r2.7/pl_lfg-ud-train.conllu",
        "dev": "UD_Polish-LFG/r2.7/pl_lfg-ud-dev.conllu",
        "test": "UD_Polish-LFG/r2.7/pl_lfg-ud-test.conllu",
    },
    "pl_pdb": {
        "train": "UD_Polish-PDB/r2.7/pl_pdb-ud-train.conllu",
        "dev": "UD_Polish-PDB/r2.7/pl_pdb-ud-dev.conllu",
        "test": "UD_Polish-PDB/r2.7/pl_pdb-ud-test.conllu",
    },
    "pl_pud": {
        "test": "UD_Polish-PUD/r2.7/pl_pud-ud-test.conllu",
    },
    "pt_bosque": {
        "train": "UD_Portuguese-Bosque/r2.7/pt_bosque-ud-train.conllu",
        "dev": "UD_Portuguese-Bosque/r2.7/pt_bosque-ud-dev.conllu",
        "test": "UD_Portuguese-Bosque/r2.7/pt_bosque-ud-test.conllu",
    },
    "pt_gsd": {
        "train": "UD_Portuguese-GSD/r2.7/pt_gsd-ud-train.conllu",
        "dev": "UD_Portuguese-GSD/r2.7/pt_gsd-ud-dev.conllu",
        "test": "UD_Portuguese-GSD/r2.7/pt_gsd-ud-test.conllu",
    },
    "pt_pud": {
        "test": "UD_Portuguese-PUD/r2.7/pt_pud-ud-test.conllu",
    },
    "ro_nonstandard": {
        "train": "UD_Romanian-Nonstandard/r2.7/ro_nonstandard-ud-train.conllu",
        "dev": "UD_Romanian-Nonstandard/r2.7/ro_nonstandard-ud-dev.conllu",
        "test": "UD_Romanian-Nonstandard/r2.7/ro_nonstandard-ud-test.conllu",
    },
    "ro_rrt": {
        "train": "UD_Romanian-RRT/r2.7/ro_rrt-ud-train.conllu",
        "dev": "UD_Romanian-RRT/r2.7/ro_rrt-ud-dev.conllu",
        "test": "UD_Romanian-RRT/r2.7/ro_rrt-ud-test.conllu",
    },
    "ro_simonero": {
        "train": "UD_Romanian-SiMoNERo/r2.7/ro_simonero-ud-train.conllu",
        "dev": "UD_Romanian-SiMoNERo/r2.7/ro_simonero-ud-dev.conllu",
        "test": "UD_Romanian-SiMoNERo/r2.7/ro_simonero-ud-test.conllu",
    },
    "ru_gsd": {
        "train": "UD_Russian-GSD/r2.7/ru_gsd-ud-train.conllu",
        "dev": "UD_Russian-GSD/r2.7/ru_gsd-ud-dev.conllu",
        "test": "UD_Russian-GSD/r2.7/ru_gsd-ud-test.conllu",
    },
    "ru_pud": {
        "test": "UD_Russian-PUD/r2.7/ru_pud-ud-test.conllu",
    },
    "ru_syntagrus": {
        "train": "UD_Russian-SynTagRus/r2.7/ru_syntagrus-ud-train.conllu",
        "dev": "UD_Russian-SynTagRus/r2.7/ru_syntagrus-ud-dev.conllu",
        "test": "UD_Russian-SynTagRus/r2.7/ru_syntagrus-ud-test.conllu",
    },
    "ru_taiga": {
        "train": "UD_Russian-Taiga/r2.7/ru_taiga-ud-train.conllu",
        "dev": "UD_Russian-Taiga/r2.7/ru_taiga-ud-dev.conllu",
        "test": "UD_Russian-Taiga/r2.7/ru_taiga-ud-test.conllu",
    },
    "sa_ufal": {
        "test": "UD_Sanskrit-UFAL/r2.7/sa_ufal-ud-test.conllu",
    },
    "sa_vedic": {
        "train": "UD_Sanskrit-Vedic/r2.7/sa_vedic-ud-train.conllu",
        "test": "UD_Sanskrit-Vedic/r2.7/sa_vedic-ud-test.conllu",
    },
    "gd_arcosg": {
        "train": "UD_Scottish_Gaelic-ARCOSG/r2.7/gd_arcosg-ud-train.conllu",
        "dev": "UD_Scottish_Gaelic-ARCOSG/r2.7/gd_arcosg-ud-dev.conllu",
        "test": "UD_Scottish_Gaelic-ARCOSG/r2.7/gd_arcosg-ud-test.conllu",
    },
    "sr_set": {
        "train": "UD_Serbian-SET/r2.7/sr_set-ud-train.conllu",
        "dev": "UD_Serbian-SET/r2.7/sr_set-ud-dev.conllu",
        "test": "UD_Serbian-SET/r2.7/sr_set-ud-test.conllu",
    },
    "sms_giellagas": {
        "test": "UD_Skolt_Sami-Giellagas/r2.7/sms_giellagas-ud-test.conllu",
    },
    "sk_snk": {
        "train": "UD_Slovak-SNK/r2.7/sk_snk-ud-train.conllu",
        "dev": "UD_Slovak-SNK/r2.7/sk_snk-ud-dev.conllu",
        "test": "UD_Slovak-SNK/r2.7/sk_snk-ud-test.conllu",
    },
    "sl_ssj": {
        "train": "UD_Slovenian-SSJ/r2.7/sl_ssj-ud-train.conllu",
        "dev": "UD_Slovenian-SSJ/r2.7/sl_ssj-ud-dev.conllu",
        "test": "UD_Slovenian-SSJ/r2.7/sl_ssj-ud-test.conllu",
    },
    "sl_sst": {
        "train": "UD_Slovenian-SST/r2.7/sl_sst-ud-train.conllu",
        "test": "UD_Slovenian-SST/r2.7/sl_sst-ud-test.conllu",
    },
    "soj_aha": {
        "test": "UD_Soi-AHA/r2.7/soj_aha-ud-test.conllu",
    },
    "ajp_madar": {
        "test": "UD_South_Levantine_Arabic-MADAR/r2.7/ajp_madar-ud-test.conllu",
    },
    "es_ancora": {
        "train": "UD_Spanish-AnCora/r2.7/es_ancora-ud-train.conllu",
        "dev": "UD_Spanish-AnCora/r2.7/es_ancora-ud-dev.conllu",
        "test": "UD_Spanish-AnCora/r2.7/es_ancora-ud-test.conllu",
    },
    "es_gsd": {
        "train": "UD_Spanish-GSD/r2.7/es_gsd-ud-train.conllu",
        "dev": "UD_Spanish-GSD/r2.7/es_gsd-ud-dev.conllu",
        "test": "UD_Spanish-GSD/r2.7/es_gsd-ud-test.conllu",
    },
    "es_pud": {
        "test": "UD_Spanish-PUD/r2.7/es_pud-ud-test.conllu",
    },
    "swl_sslc": {
        "train": "UD_Swedish_Sign_Language-SSLC/r2.7/swl_sslc-ud-train.conllu",
        "dev": "UD_Swedish_Sign_Language-SSLC/r2.7/swl_sslc-ud-dev.conllu",
        "test": "UD_Swedish_Sign_Language-SSLC/r2.7/swl_sslc-ud-test.conllu",
    },
    "sv_lines": {
        "train": "UD_Swedish-LinES/r2.7/sv_lines-ud-train.conllu",
        "dev": "UD_Swedish-LinES/r2.7/sv_lines-ud-dev.conllu",
        "test": "UD_Swedish-LinES/r2.7/sv_lines-ud-test.conllu",
    },
    "sv_pud": {
        "test": "UD_Swedish-PUD/r2.7/sv_pud-ud-test.conllu",
    },
    "sv_talbanken": {
        "train": "UD_Swedish-Talbanken/r2.7/sv_talbanken-ud-train.conllu",
        "dev": "UD_Swedish-Talbanken/r2.7/sv_talbanken-ud-dev.conllu",
        "test": "UD_Swedish-Talbanken/r2.7/sv_talbanken-ud-test.conllu",
    },
    "gsw_uzh": {
        "test": "UD_Swiss_German-UZH/r2.7/gsw_uzh-ud-test.conllu",
    },
    "tl_trg": {
        "test": "UD_Tagalog-TRG/r2.7/tl_trg-ud-test.conllu",
    },
    "tl_ugnayan": {
        "test": "UD_Tagalog-Ugnayan/r2.7/tl_ugnayan-ud-test.conllu",
    },
    "ta_mwtt": {
        "test": "UD_Tamil-MWTT/r2.7/ta_mwtt-ud-test.conllu",
    },
    "ta_ttb": {
        "train": "UD_Tamil-TTB/r2.7/ta_ttb-ud-train.conllu",
        "dev": "UD_Tamil-TTB/r2.7/ta_ttb-ud-dev.conllu",
        "test": "UD_Tamil-TTB/r2.7/ta_ttb-ud-test.conllu",
    },
    "te_mtg": {
        "train": "UD_Telugu-MTG/r2.7/te_mtg-ud-train.conllu",
        "dev": "UD_Telugu-MTG/r2.7/te_mtg-ud-dev.conllu",
        "test": "UD_Telugu-MTG/r2.7/te_mtg-ud-test.conllu",
    },
    "th_pud": {
        "test": "UD_Thai-PUD/r2.7/th_pud-ud-test.conllu",
    },
    "tpn_tudet": {
        "test": "UD_Tupinamba-TuDeT/r2.7/tpn_tudet-ud-test.conllu",
    },
    "qtd_sagt": {
        "train": "UD_Turkish_German-SAGT/r2.7/qtd_sagt-ud-train.conllu",
        "dev": "UD_Turkish_German-SAGT/r2.7/qtd_sagt-ud-dev.conllu",
        "test": "UD_Turkish_German-SAGT/r2.7/qtd_sagt-ud-test.conllu",
    },
    "tr_boun": {
        "train": "UD_Turkish-BOUN/r2.7/tr_boun-ud-train.conllu",
        "dev": "UD_Turkish-BOUN/r2.7/tr_boun-ud-dev.conllu",
        "test": "UD_Turkish-BOUN/r2.7/tr_boun-ud-test.conllu",
    },
    "tr_gb": {
        "test": "UD_Turkish-GB/r2.7/tr_gb-ud-test.conllu",
    },
    "tr_imst": {
        "train": "UD_Turkish-IMST/r2.7/tr_imst-ud-train.conllu",
        "dev": "UD_Turkish-IMST/r2.7/tr_imst-ud-dev.conllu",
        "test": "UD_Turkish-IMST/r2.7/tr_imst-ud-test.conllu",
    },
    "tr_pud": {
        "test": "UD_Turkish-PUD/r2.7/tr_pud-ud-test.conllu",
    },
    "uk_iu": {
        "train": "UD_Ukrainian-IU/r2.7/uk_iu-ud-train.conllu",
        "dev": "UD_Ukrainian-IU/r2.7/uk_iu-ud-dev.conllu",
        "test": "UD_Ukrainian-IU/r2.7/uk_iu-ud-test.conllu",
    },
    "hsb_ufal": {
        "train": "UD_Upper_Sorbian-UFAL/r2.7/hsb_ufal-ud-train.conllu",
        "test": "UD_Upper_Sorbian-UFAL/r2.7/hsb_ufal-ud-test.conllu",
    },
    "ur_udtb": {
        "train": "UD_Urdu-UDTB/r2.7/ur_udtb-ud-train.conllu",
        "dev": "UD_Urdu-UDTB/r2.7/ur_udtb-ud-dev.conllu",
        "test": "UD_Urdu-UDTB/r2.7/ur_udtb-ud-test.conllu",
    },
    "ug_udt": {
        "train": "UD_Uyghur-UDT/r2.7/ug_udt-ud-train.conllu",
        "dev": "UD_Uyghur-UDT/r2.7/ug_udt-ud-dev.conllu",
        "test": "UD_Uyghur-UDT/r2.7/ug_udt-ud-test.conllu",
    },
    "vi_vtb": {
        "train": "UD_Vietnamese-VTB/r2.7/vi_vtb-ud-train.conllu",
        "dev": "UD_Vietnamese-VTB/r2.7/vi_vtb-ud-dev.conllu",
        "test": "UD_Vietnamese-VTB/r2.7/vi_vtb-ud-test.conllu",
    },
    "wbp_ufal": {
        "test": "UD_Warlpiri-UFAL/r2.7/wbp_ufal-ud-test.conllu",
    },
    "cy_ccg": {
        "train": "UD_Welsh-CCG/r2.7/cy_ccg-ud-train.conllu",
        "test": "UD_Welsh-CCG/r2.7/cy_ccg-ud-test.conllu",
    },
    "wo_wtb": {
        "train": "UD_Wolof-WTB/r2.7/wo_wtb-ud-train.conllu",
        "dev": "UD_Wolof-WTB/r2.7/wo_wtb-ud-dev.conllu",
        "test": "UD_Wolof-WTB/r2.7/wo_wtb-ud-test.conllu",
    },
    "yo_ytb": {
        "test": "UD_Yoruba-YTB/r2.7/yo_ytb-ud-test.conllu",
    },
}


class UniversaldependenciesConfig(datasets.BuilderConfig):
    """BuilderConfig for Universal dependencies"""

    def __init__(self, data_url, **kwargs):
        super(UniversaldependenciesConfig, self).__init__(version=datasets.Version("2.7.0", ""), **kwargs)

        self.data_url = data_url


class UniversalDependencies(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("2.7.0")
    BUILDER_CONFIGS = [
        UniversaldependenciesConfig(
            name=name,
            description=_DESCRIPTIONS[name],
            data_url="https://github.com/UniversalDependencies/" + _UD_DATASETS[name]["test"].split("/")[0],
        )
        for name in _NAMES
    ]
    BUILDER_CONFIG_CLASS = UniversaldependenciesConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "idx": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "lemmas": datasets.Sequence(datasets.Value("string")),
                    "upos": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "NOUN",
                                "PUNCT",
                                "ADP",
                                "NUM",
                                "SYM",
                                "SCONJ",
                                "ADJ",
                                "PART",
                                "DET",
                                "CCONJ",
                                "PROPN",
                                "PRON",
                                "X",
                                "_",
                                "ADV",
                                "INTJ",
                                "VERB",
                                "AUX",
                            ]
                        )
                    ),
                    "xpos": datasets.Sequence(datasets.Value("string")),
                    "feats": datasets.Sequence(datasets.Value("string")),
                    "head": datasets.Sequence(datasets.Value("string")),
                    "deprel": datasets.Sequence(datasets.Value("string")),
                    "deps": datasets.Sequence(datasets.Value("string")),
                    "misc": datasets.Sequence(datasets.Value("string")),
                }
            ),
            supervised_keys=None,
            homepage="https://universaldependencies.org/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {}
        for split, address in _UD_DATASETS[self.config.name].items():
            urls_to_download[split] = []
            if isinstance(address, list):
                for add in address:
                    urls_to_download[split].append(_PREFIX + add)
            else:
                urls_to_download[split].append(_PREFIX + address)

        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        splits = []

        if "train" in downloaded_files:
            splits.append(
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})
            )

        if "dev" in downloaded_files:
            splits.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}
                )
            )

        if "test" in downloaded_files:
            splits.append(
                datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
            )

        return splits

    def _generate_examples(self, filepath):
        id = 0
        for path in filepath:
            with open(path, "r", encoding="utf-8") as data_file:
                tokenlist = list(conllu.parse_incr(data_file))
                for sent in tokenlist:
                    if "sent_id" in sent.metadata:
                        idx = sent.metadata["sent_id"]
                    else:
                        idx = id

                    tokens = [token["form"] for token in sent]

                    if "text" in sent.metadata:
                        txt = sent.metadata["text"]
                    else:
                        txt = " ".join(tokens)

                    yield id, {
                        "idx": str(idx),
                        "text": txt,
                        "tokens": [token["form"] for token in sent],
                        "lemmas": [token["lemma"] for token in sent],
                        "upos": [token["upos"] for token in sent],
                        "xpos": [token["xpos"] for token in sent],
                        "feats": [str(token["feats"]) for token in sent],
                        "head": [str(token["head"]) for token in sent],
                        "deprel": [str(token["deprel"]) for token in sent],
                        "deps": [str(token["deps"]) for token in sent],
                        "misc": [str(token["misc"]) for token in sent],
                    }
                    id += 1